cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257179 Expansion of (1 + x^5) / ((1 - x) * (1 + x^4)) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Michael Somos, Apr 17 2015

Keywords

Examples

			G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Boole[n != 0] - Boole[Mod[n, 4] == 0] + 2 Boole[Mod[n, 8] == 0];
    a[ n_] := -Boole[n == 0] + {1, 1, 1, 0, 1, 1, 1, 2}[[Mod[n, 8, 1]]];
    a[ n_] := SeriesCoefficient[ (1 + x^5) / ((1 - x) * (1 + x^4)), {x, 0, Abs@n}];
  • PARI
    {a(n) = (n != 0) - (n%4 == 0) + 2*(n%8 == 0)};
    
  • PARI
    {a(n) = -(n==0) + [2, 1, 1, 1, 0, 1, 1, 1][n%8 + 1]};
    
  • PARI
    {a(n) = polcoeff( (1 + x^5) / ((1 - x) * (1 + x^4)) + x * O(x^abs(n)), abs(n))};

Formula

Euler transform of length 10 sequence [1, 0, 0, -1, 1, 0, 0, 1, 0, -1].
Moebius transform is length 8 sequence [1, 0, 0, -1, 0, 0, 0, 2].
a(n) is multiplicative with a(2) = 1, a(4) = 0, a(2^e) = 2 if e>2, a(p^e) = 1 if p>2 and a(0) = 1.
G.f.: (1 + x^5) / ((1 - x) * (1 + x^4)).
G.f.: (1 - x^4) * (1 - x^10) / ((1 - x) * (1 - x^5) * (1 - x^8)).
G.f.: -1 + 1 / (1 - x) + 1 / (1 + x^4).
a(n) = a(-n) for all n in Z. a(n+8) = a(n) unless n=0 or n=-8. a(8*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1. a(8*n + 4) = 0.
a(n) = A259042(n+4) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(s)*(1-1/4^s+2/8^s). - Amiram Eldar, Jan 05 2023

Extensions

More terms from Antti Karttunen, Jul 29 2018