A257179 Expansion of (1 + x^5) / ((1 - x) * (1 + x^4)) in powers of x.
1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + x^11 + ...
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,1).
Programs
-
Mathematica
a[ n_] := Boole[n != 0] - Boole[Mod[n, 4] == 0] + 2 Boole[Mod[n, 8] == 0]; a[ n_] := -Boole[n == 0] + {1, 1, 1, 0, 1, 1, 1, 2}[[Mod[n, 8, 1]]]; a[ n_] := SeriesCoefficient[ (1 + x^5) / ((1 - x) * (1 + x^4)), {x, 0, Abs@n}];
-
PARI
{a(n) = (n != 0) - (n%4 == 0) + 2*(n%8 == 0)};
-
PARI
{a(n) = -(n==0) + [2, 1, 1, 1, 0, 1, 1, 1][n%8 + 1]};
-
PARI
{a(n) = polcoeff( (1 + x^5) / ((1 - x) * (1 + x^4)) + x * O(x^abs(n)), abs(n))};
Formula
Euler transform of length 10 sequence [1, 0, 0, -1, 1, 0, 0, 1, 0, -1].
Moebius transform is length 8 sequence [1, 0, 0, -1, 0, 0, 0, 2].
a(n) is multiplicative with a(2) = 1, a(4) = 0, a(2^e) = 2 if e>2, a(p^e) = 1 if p>2 and a(0) = 1.
G.f.: (1 + x^5) / ((1 - x) * (1 + x^4)).
G.f.: (1 - x^4) * (1 - x^10) / ((1 - x) * (1 - x^5) * (1 - x^8)).
G.f.: -1 + 1 / (1 - x) + 1 / (1 + x^4).
a(n) = a(-n) for all n in Z. a(n+8) = a(n) unless n=0 or n=-8. a(8*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1. a(8*n + 4) = 0.
a(n) = A259042(n+4) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(s)*(1-1/4^s+2/8^s). - Amiram Eldar, Jan 05 2023
Extensions
More terms from Antti Karttunen, Jul 29 2018