A257198 Number of permutations of length n having exactly one descent such that the first element of the permutation is an odd number.
0, 0, 2, 6, 16, 36, 78, 162, 332, 672, 1354, 2718, 5448, 10908, 21830, 43674, 87364, 174744, 349506, 699030, 1398080, 2796180, 5592382, 11184786, 22369596, 44739216, 89478458, 178956942, 357913912, 715827852, 1431655734, 2863311498, 5726623028
Offset: 1
Examples
a(3)=2: (1 3 2, 3 1 2). a(4)=6: (1 2 4 3, 1 3 2 4, 1 4 2 3, 1 3 4 2, 3 1 2 4, 3 4 1 2).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).
Programs
-
Magma
[2*Floor((2*2^n-3*n-1)/6): n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Mathematica
Table[2 Floor[(2 2^n - 3 n - 1) / 6], {n, 50}] (* Vincenzo Librandi, Apr 18 2015 *)
-
PARI
concat([0,0], Vec(-2*x^3/((x-1)^2*(x+1)*(2*x-1)) + O(x^100))) \\ Colin Barker, Apr 19 2015
-
PARI
a(n)=(2<
Charles R Greathouse IV, Apr 21 2015
Formula
a(n) = 2*floor((2*2^n-3*n-1)/6).
a(n) = 2*A178420(n-1).
From Colin Barker, Apr 19 2015: (Start)
a(n) = (-3-(-1)^n+2^(2+n)-6*n)/6.
a(n) = 3*a(n-1)-a(n-2)-3*a(n-3)+2*a(n-4).
G.f.: -2*x^3 / ((x-1)^2*(x+1)*(2*x-1)).
(End)