cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257213 Least d>0 such that floor(n/d) = floor(n/(d+1)).

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 4, 4, 3, 5, 4, 4, 5, 5, 5, 4, 6, 6, 5, 5, 7, 6, 6, 6, 5, 7, 7, 7, 6, 6, 8, 8, 7, 7, 7, 6, 8, 8, 8, 8, 7, 7, 9, 9, 9, 8, 8, 8, 7, 10, 9, 9, 9, 9, 8, 8, 10, 10, 10, 10, 9, 9, 9, 8, 11, 11, 10, 10, 10, 10, 9, 9, 11, 11, 11, 11, 11, 10, 10, 10
Offset: 0

Views

Author

M. F. Hasler, Apr 18 2015

Keywords

Comments

For n > 1: a(A043548(n)) = n. - Reinhard Zumkeller, Apr 19 2015

Examples

			a(0)=1 because 0/1 = 0/2.
a(1)=2 because [1/1] = 1 > [1/2] = 0 = [1/3], where [x] := floor(x).
a(2)=3 because [2/1] = 2 > [2/2] = 1 > [2/3] = 0 = [2/4].
		

Crossrefs

Programs

  • Haskell
    a257213 n = head [d | d <- [1..], div n d == div n (d + 1)]
    -- Reinhard Zumkeller, Apr 19 2015
  • Mathematica
    f[n_] := Block[{d, k}, Reap@ For[k = 0, k <= n, k++, d = 1; While[Floor[k/d] != Floor[k/(d + 1)], d++]; Sow@ d] // Flatten // Rest]; f@ 79 (* Michael De Vlieger, Apr 18 2015 *)
    Table[Module[{d=1},While[Floor[n/d]!=Floor[n/(d+1)],d++];d],{n,0,80}] (* Harvey P. Dale, Aug 16 2025 *)
  • PARI
    A257213(n)=for(d=sqrtint(n)+1,n+1,n\d==n\(d+1)&&return(d))
    

Formula

a(n) >= A003059(n+1) = floor(sqrt(n))+1 >= A003059(n) = ceiling(sqrt(n)) >= A257212(n), with strict inequality (in the middle relation) when n is a square.
a(k^2-1) = k for k > 1. Proof: For n=k^2-1=(k-1)*(k+1), floor(n/k) = k-1 = n/(k+1), but n/(k-1)=k+1 and when denominators decrease further, this keeps increasing.
a(k^2) >= k+d when k > d*(d-1). Proof: This follows from k^2/(k+d) = k-d+d^2/(k+d), which shows that a(k) >= d when k > d*(d-1).
a(n) = A259361(n) + 1 + floor(sqrt((A232091(n+1) - 1 - n) + A079813(n+1)) + A079813(n+1)/2) = floor((sqrt(4*n+1)+1)/2) + floor(sqrt(ceiling((n+1) / ceiling(sqrt(n+1)) + 1) * ceiling(sqrt(n+1)) - round(sqrt(n+1)) - n - 1) + (ceiling(sqrt(n+1)) - round(sqrt(n+1)))/2). - Haofen Liang, Aug 25 2021
a(n) = floor(sqrt(p*q - n) + (p + q)/2), where p = floor(sqrt(n)) and q = floor(sqrt(n+1) + 3/2). - Ridouane Oudra, Jan 24 2023