cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257224 Numbers that have at least one divisor containing the digit 7 in base 10.

Original entry on oeis.org

7, 14, 17, 21, 27, 28, 34, 35, 37, 42, 47, 49, 51, 54, 56, 57, 63, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 91, 94, 97, 98, 102, 105, 107, 108, 111, 112, 114, 117, 119, 126, 127, 133, 134, 135, 136, 137, 140, 141, 142, 144, 146, 147, 148
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 7.
A011537 (numbers that contain a 7) is a subsequence. - Michel Marcus, May 25 2015

Examples

			14 is in sequence because the list of divisors of 14: (1, 2, 7, 14) contains digit 7.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [7] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 7] > 0 &]
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 7), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257224_gen(): return filter(lambda n:any('7' in str(d) for d in divisors(n, generator=True)), count(1))
    A257224_list = list(islice(A257224_gen(), 60)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.