A257232 Triangle T(n, k) with the natural numbers in columns with nonprime k and the nonnegative numbers in columns with prime k, for 1 <= k <= n.
1, 2, 0, 3, 1, 0, 4, 2, 1, 1, 5, 3, 2, 2, 0, 6, 4, 3, 3, 1, 1, 7, 5, 4, 4, 2, 2, 0, 8, 6, 5, 5, 3, 3, 1, 1, 9, 7, 6, 6, 4, 4, 2, 2, 1, 10, 8, 7, 7, 5, 5, 3, 3, 2, 1, 11, 9, 8, 8, 6, 6, 4, 4, 3, 2, 0
Offset: 1
Examples
The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 ... 1: 1 2: 2 0 3: 3 1 0 4: 4 2 1 1 5: 5 3 2 2 0 6: 6 4 3 3 1 1 7: 7 5 4 4 2 2 0 8: 8 6 5 5 3 3 1 1 9: 9 7 6 6 4 4 2 2 1 10: 10 8 7 7 5 5 3 3 2 1 11: 11 9 8 8 6 6 4 4 3 2 0 ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Programs
-
Haskell
a257232 n k = a257232_tabl !! (n-1) !! (k-1) a257232_row n = a257232_tabl !! (n-1) a257232_tabl = iterate (\xs@(x:_) -> map (+ 1) xs ++ [1 - a010051 (x + 1)]) [1] -- Reinhard Zumkeller, Apr 21 2015
-
Mathematica
Table[n - (k - 1) - Boole[PrimeQ@ k], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Apr 19 2015 *)
Formula
T(n, k) = n - (k-1) - [isprime(k)], with [isprime(k)] = A010051(k), for 1 <= k <= n.
O.g.f. for column k (with leading zeros): x^k/(1-x)^2 if k is nonprime, otherwise x^(k+1)/(1-x)^2.
T(n+1,k) = T(n,k) + 1, 1 <= k <= n, T(n+1,n+1) = 1 - A010051(n+1). - Reinhard Zumkeller, Apr 21 2015
Comments