cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257365 Triangle, read by rows, T(n,k) = Sum_{m=0..(n-k)/2} C(k,m)*C(n-2*m,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 8, 16, 13, 5, 1, 1, 10, 28, 32, 19, 6, 1, 1, 12, 44, 68, 55, 26, 7, 1, 1, 14, 64, 128, 136, 86, 34, 8, 1, 1, 16, 88, 220, 296, 241, 126, 43, 9, 1, 1, 18, 116, 352, 584, 592, 393, 176, 53, 10, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 21 2015

Keywords

Comments

From Emanuele Munarini, Feb 21 2017: (Start)
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps X=(1,0), D=(1,1) and E=(3,1).
Row sums = A008998.
Central coefficients = A006139. (End)

Examples

			1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 8, 4, 1;
1, 8, 16, 13, 5, 1;
		

Crossrefs

Cf. A006139.

Programs

  • Mathematica
    Table[Sum[Binomial[k, m] Binomial[n - 2 m, k], {m, 0, (n - k)/2}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 21 2015 *)
  • Maxima
    T(n,k):=sum(binomial(k,m)*binomial(n-2*m,k),m,0,(n-k)/2);

Formula

G.f.: 1/(1-y-x*(1+y^2)).
From Emanuele Munarini, Feb 21 2017: (Start)
G.f. for the triangle: 1/(1-x-x*y-x^3*y).
Recurrence: T(n+3,k+1) = T(n+2,k+1) + T(n+2,k) + T(n,k). (End)