A257366 Smallest integer m such that m^2 + 1 has exactly n prime factors, counted with multiplicity.
1, 3, 7, 43, 57, 307, 1068, 2943, 12943, 45807, 110443, 670807, 2733307, 25670807, 113561432, 123327057, 657922943, 17213170807, 7200891693, 148802454193, 1120482141693
Offset: 1
Examples
a(1)=1 because 1^2+1=2(prime), a(2)=3 because 3^2+1=10=2*5, a(3)=7 because 7^2+1=50=2*2*5, ............... a(14)=25670807 because 25670807^2+1=2*5^11*149*45289.
Programs
-
Mathematica
Table[m = 1; While[PrimeOmega[m^2 + 1] != n, m++]; m, {n, 12}] (* Michael De Vlieger, Apr 21 2015 *)
-
PARI
a(n)=my(m); while(bigomega(m++^2+1)!=n, ); m \\ Charles R Greathouse IV, Apr 21 2015
Extensions
a(15)-a(17) from Jon E. Schoenfield, Jun 14 2015
a(18)-a(19) from Jon E. Schoenfield, Jun 15 2015
a(20) from Jon E. Schoenfield, Jul 10 2015
a(21) from Max Alekseyev, Jan 08 2025
Comments