A257387 Number of Motzkin paths of length n with no level steps at height 4.
1, 1, 2, 4, 9, 21, 51, 127, 323, 834, 2179, 5743, 15238, 40637, 108800, 292200, 786703, 2122387, 5735596, 15522682, 42064028, 114117541, 309918698, 842489130, 2292332265, 6242655886
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
-
PARI
x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))))) \\ G. C. Greubel, Jun 03 2017
Formula
a(n) = a(n-1) + Sum_{j=0..n-2} A257386(j)*a(n-j).
G.f: 1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*R(x)))))))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+1/2)/(24*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2015