A257390 Number of 4-Motzkin paths of length n with no level steps at even level.
1, 0, 1, 4, 18, 80, 357, 1596, 7150, 32096, 144362, 650568, 2937316, 13286368, 60205805, 273290988, 1242639446, 5659468736, 25816338046, 117945079736, 539646216188, 2472638868960, 11345220210658, 52124831171544, 239792244636876, 1104495824173376
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1322
Programs
-
Maple
rec:= a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2): f:= gfun:-rectoproc({rec,a(0)=1,a(1)=0,a(2)=1},a(n),remember): seq(f(i),i=0..100); # Robert Israel, Apr 22 2015
-
Mathematica
CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
-
PARI
x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Apr 08 2017
Formula
a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the i-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2).
a(n) ~ 2^(n+3/4) * (1+sqrt(2))^(n+1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2). - Robert Israel, Apr 22 2015