cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A257411 Values of n such that there are exactly 4 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

96, 105, 120, 135, 160, 165, 168, 189, 195, 216, 224, 231, 255, 256, 264, 273, 280, 285, 297, 312, 345, 351, 352, 357, 375, 385, 399, 408, 416, 420, 429, 435, 440, 455, 456, 459, 465, 483, 512, 513, 520, 540, 544, 552, 555, 561, 595, 608, 609, 615, 616, 621
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Examples

			96 is in the sequence because there are 4 solutions to x^2 - y^2 = 96, namely (x,y) = (10,2), (11,5), (14,10), (25,23).
		

Crossrefs

Programs

A257417 Values of n such that there are exactly 10 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 2592, 2835, 3240, 3264, 3520, 3648, 4160, 4416, 4455, 4536, 4928, 5265, 5440, 5568, 5824, 5952, 6080, 6144, 6237, 6885, 7104, 7128, 7360, 7371, 7616, 7695, 7872, 8000, 8256, 8424, 8512, 9024, 9152, 9280, 9315, 9639, 9920
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Examples

			960 is in the sequence because there are 10 solutions to x^2 - y^2 = 960, namely (x,y) = (31,1), (32,8), (34,14), (38,22), (46,34), (53,43), (64,56), (83,77), (122,118), (241,239).
		

Crossrefs

Programs

A257413 Values of n such that there are exactly 6 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

240, 288, 315, 336, 360, 384, 432, 495, 504, 525, 528, 560, 585, 600, 624, 640, 675, 693, 735, 765, 792, 800, 816, 819, 825, 855, 880, 896, 912, 936, 975, 1035, 1040, 1071, 1104, 1125, 1176, 1197, 1215, 1224, 1232, 1260, 1275, 1287, 1305, 1323, 1360, 1368
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Examples

			240 is in the sequence because there are 6 solutions to x^2 - y^2 = 240, namely (x,y) = (16,4), (17,7), (19,11), (23,17), (32,28), (61,59).
		

Crossrefs

Programs

A257414 Values of n such that there are exactly 7 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

768, 1280, 1792, 2816, 3328, 3645, 4352, 4864, 5103, 5832, 5888, 7424, 7936, 8019, 9472, 9477, 10496, 11008, 12032, 12393, 13568, 13851, 14580, 15104, 15616, 16384, 16767, 17152, 18176, 18688, 20224, 20412, 21141, 21248, 22599, 22784, 24832, 25856, 26368
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Examples

			768 is in the sequence because there are 7 solutions to x^2 - y^2 = 768, namely (x,y) = (28,4), (32,16), (38,26), (52,44), (67,61), (98,94), (193,191).
		

Crossrefs

Programs

A257315 a(1) = 34; a(2) = 35; for n > 2, a(n) is the smallest number of the form prime + 32 not already used which shares a factor with a(n-1).

Original entry on oeis.org

34, 35, 45, 39, 51, 63, 49, 91, 105, 55, 75, 69, 93, 99, 111, 37, 259, 133, 171, 129, 43, 301, 189, 135, 85, 115, 145, 195, 141, 159, 183, 61, 793, 169, 273, 213, 225, 205, 255, 231, 121, 363, 243, 261, 303, 309, 103, 1339, 325, 265, 295, 315, 339, 345, 369
Offset: 1

Views

Author

Vladimir Shevelev, Apr 20 2015

Keywords

Comments

Analog of EKG-sequence (A064413) on the numbers of the form prime + 32.
Conjecture: the sequence {a(n)-32} is a permutation of primes (A000040).

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{o = 2^5, s, p, k}, s = {o + 2, o + 3}; For[k = 3, k <= n, k++, p = 2; While[GCD[p + o, s[[k - 1]]] == 1 || MemberQ[s, p + o], p = NextPrime@ p]; AppendTo[s, p + o]]; s]; f@ 55 (* Michael De Vlieger, Apr 20 2015 *)

Extensions

More terms from Peter J. C. Moses, Apr 20 2015

A257415 Values of n such that there are exactly 8 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

480, 576, 672, 840, 864, 945, 1056, 1080, 1120, 1155, 1248, 1296, 1320, 1365, 1485, 1512, 1536, 1560, 1600, 1632, 1755, 1760, 1785, 1824, 1848, 1995, 2025, 2040, 2079, 2080, 2145, 2184, 2208, 2280, 2295, 2376, 2415, 2457, 2464, 2560, 2565, 2625, 2720, 2760
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Examples

			480 is in the sequence because there are 8 solutions to x^2 - y^2 = 480, namely (x,y) = (22,2), (23,7), (26,14), (29,19), (34,26), (43,37), (62,58), (121,119).
		

Crossrefs

Programs

A257416 Values of n such that there are exactly 9 solutions to x^2 - y^2 = n with x > y >= 0.

Original entry on oeis.org

720, 1008, 1152, 1200, 1575, 1584, 1800, 1872, 2205, 2352, 2448, 2475, 2736, 2800, 2925, 3072, 3200, 3312, 3528, 3675, 3825, 3888, 3920, 4176, 4275, 4400, 4464, 4851, 5120, 5175, 5200, 5328, 5445, 5733, 5808, 5904, 6075, 6192, 6272, 6300, 6525, 6768, 6800
Offset: 1

Views

Author

Colin Barker, Apr 22 2015

Keywords

Comments

Numbers of the following forms: p[1]*p[2]^2*p[3]^2, p[1]^2*p[2]^5, p[1]*p[2]^8, p[1]^17, 2^2*p[1]*p[2]^2*p[3]^2, 2^2*p[1]^2*p[2]^5, 2^3*p[1]^2*p[2]^2, 2^3*p[1]^8, 2^4*p[1]*p[2]^2, 2^4*p[1]^5, 2^7*p[1]^2, 2^10*p[1], 2^19, where p[i] are distinct odd primes. - Robert Israel, Jun 19 2018

Examples

			720 is in the sequence because there are 9 solutions to x^2 - y^2 = 720, namely (x,y) = (27,3), (28,8), (29,11), (36,24), (41,31), (49,41), (63,57), (92,88), (181,179).
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local k;
    k:= padic:-ordp(n,2);
    (k = 0 and numtheory:-tau(n)=18) or (k-1)*numtheory:-tau(n/2^k)=18
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Jun 19 2018
  • Mathematica
    nn = 6800;
    t = Table[0, {nn}];
    Do[n = x^2 - y^2; If[n <= nn, t[[n]]++], {x, nn}, {y, 0, x - 1}];
    Position[t, 9] // Flatten (* Jean-François Alcover, Jun 18 2020, after T. D. Noe in A034178 *)
  • PARI
    is_A257416(n)={A034178(n)==9} \\ M. F. Hasler, Apr 22 2015
Showing 1-7 of 7 results.