A257449 a(n) = 75*(2^n - 1) - 4*n^3 - 18*n^2 - 52*n.
1, 17, 99, 373, 1115, 2901, 6907, 15509, 33483, 70405, 145451, 296997, 601819, 1213493, 2439195, 4893301, 9804587, 19630629, 39286603, 78602885, 157240251, 314520277, 629086139, 1258224213, 2516507275, 5033080901, 10066236267, 20132555749, 40265204123
Offset: 1
Examples
This sequence provides the antidiagonal sums of the array: 1, 16, 81, 256, 625, 1296, ... A000583 1, 17, 98, 354, 979, 2275, ... A000538 1, 18, 116, 470, 1449, 3724, ... A101089 1, 19, 135, 605, 2054, 5778, ... A101090 1, 20, 155, 760, 2814, 8592, ... A101091 1, 21, 176, 936, 3750, 12342, ... A254681 ... See also A254681 (Example field).
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Programs
-
Magma
[75*(2^n-1)-4*n^3-18*n^2-52*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
-
Mathematica
Table[75 (2^n - 1) - 4 n^3 - 18 n^2 - 52 n, {n, 30}]
Formula
G.f.: -x*(1 + x)*(1 + 10*x + x^2)/((-1 + x)^4*(-1 + 2*x)).
a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5) for n>5.
Comments