cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257449 a(n) = 75*(2^n - 1) - 4*n^3 - 18*n^2 - 52*n.

Original entry on oeis.org

1, 17, 99, 373, 1115, 2901, 6907, 15509, 33483, 70405, 145451, 296997, 601819, 1213493, 2439195, 4893301, 9804587, 19630629, 39286603, 78602885, 157240251, 314520277, 629086139, 1258224213, 2516507275, 5033080901, 10066236267, 20132555749, 40265204123
Offset: 1

Views

Author

Luciano Ancora, Apr 23 2015

Keywords

Comments

See the first comment of A257448.

Examples

			This sequence provides the antidiagonal sums of the array:
1, 16,  81, 256,  625,  1296, ...   A000583
1, 17,  98, 354,  979,  2275, ...   A000538
1, 18, 116, 470, 1449,  3724, ...   A101089
1, 19, 135, 605, 2054,  5778, ...   A101090
1, 20, 155, 760, 2814,  8592, ...   A101091
1, 21, 176, 936, 3750, 12342, ...   A254681
...
See also A254681 (Example field).
		

Crossrefs

Programs

  • Magma
    [75*(2^n-1)-4*n^3-18*n^2-52*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
  • Mathematica
    Table[75 (2^n - 1) - 4 n^3 - 18 n^2 - 52 n, {n, 30}]

Formula

G.f.: -x*(1 + x)*(1 + 10*x + x^2)/((-1 + x)^4*(-1 + 2*x)).
a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5) for n>5.