A257448 a(n) = 13*(2^n - 1) - 3*n^2 - 9*n.
1, 9, 37, 111, 283, 657, 1441, 3051, 6319, 12909, 26149, 52695, 105859, 212265, 425161, 851043, 1702903, 3406725, 6814477, 13630095, 27261451, 54524289, 109050097, 218101851, 436205503, 872412957, 1744828021, 3489658311, 6979319059, 13958640729
Offset: 1
Examples
By the second comment, the array begins (antidiagonals in A046902): k=0: 1, 8, 27, 64, 125, 216, ... A000578 k=1: 1, 9, 36, 100, 225, 441, ... A000537 k=2: 1, 10, 46, 146, 371, 812, ... A024166 k=3: 1, 11, 57, 203, 574, 1386, ... A101094 k=4: 1, 12, 69, 272, 846, 2232, ... A101097 k=5: 1, 13, 82, 354, 1200, 3432, ... A101102 k=6: 1, 14, 96, 450, 1650, 5082, ... A254469 ... See also A254469 (Example field).
Links
- Index entries for linear recurrences with constant coefficients, signature (5, -9, 7, -2).
Programs
-
Magma
[13*(2^n-1)-3*n^2-9*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
-
Mathematica
Table[13 (2^n - 1) - 3 n^2 - 9n, {n, 30}] CoefficientList[Series[x (1 + 4 x + x^2)/((1 - x)^3*(1 - 2 x)), {x, 0, 30}], x] (* Michael De Vlieger, Nov 14 2016 *)
Formula
G.f.: x*(1+4*x+x^2)/((1-x)^3*(1-2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4. - Ray Chandler, Jul 25 2015
Extensions
Edited by Bruno Berselli, Apr 28 2015
Comments