A257450 a(n) = 541*(2^n - 1) - 5*n^4 - 30*n^3 - 130*n^2 - 375*n.
1, 33, 277, 1335, 4771, 14193, 37417, 90795, 207871, 456693, 974437, 2036655, 4195771, 8558073, 17337697, 34964595, 70300471, 141070653, 282727837, 566179575, 1133243251, 2267556033, 4536394777, 9074315835, 18150434671, 36302985093, 72608437717, 145219736895
Offset: 1
Examples
This sequence provides the antidiagonal sums of the array: 1, 32, 243, 1024, 3125, 7776, ... A000584 1, 33, 276, 1300, 4425, 12201, ... A000539 1, 34, 310, 1610, 6035, 18236, ... A101092 1, 35, 345, 1955, 7990, 26226, ... A101099 1, 36, 381, 2336, 10326, 36552, ... A254644 1, 37, 418, 2754, 13080, 49632, ... A254682 ... See also A254682 (Example field).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-20,30,-25,11,-2).
Programs
-
Magma
[541*(2^n-1)-5*n^4-30*n^3-130*n^2-375*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
-
Mathematica
Table[541 (2^n - 1) - 5 n^4 - 30 n^3 - 130 n^2 - 375 n, {n, 30}] LinearRecurrence[{7,-20,30,-25,11,-2},{1,33,277,1335,4771,14193},30] (* Harvey P. Dale, Dec 24 2018 *)
Formula
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(-1+x)^5*(-1+2*x).
a(n) = 7*a(n-1) -20*a(n-2) +30*a(n-3) -25*a(n-4) +11*a(n-5) -2*a(n-6) for n>6.
Comments