A257460 Let b_k=7...7 consist of k>0 7's. Then a(n) is the smallest k such that the concatenation prime(n)b_k is prime, or a(n)=0 if there is no such prime.
2, 1, 2, 0, 3, 1, 2, 1, 2, 48, 1, 10, 2, 3, 3, 3, 9, 1, 1, 2, 66, 1, 2, 8, 1, 2, 6, 3, 1, 3, 1, 2, 3, 6, 8, 9, 7, 1, 3, 2, 2, 3, 17, 4, 2, 1, 3, 1, 2, 1, 3, 2, 1, 5, 17, 5, 8, 16, 1, 3, 1, 8, 6, 2, 1, 3, 3, 2184, 6, 6, 3, 2, 1, 3, 1, 2, 2, 4, 2, 3, 3, 1, 2, 1, 1, 3, 6, 15, 5, 1, 48, 2, 1, 2, 7, 2, 47, 2, 1, 1
Offset: 1
Links
- Vladimir Shevelev and Robert G. Wilson v, a(n) for n = 1..10000 with -1 for those entries where a(n) has not yet been found.
Programs
-
Mathematica
f[n_] := Block[{k = 1, p = Prime[n]}, While[ !PrimeQ[p*10^k + 7(10^k - 1)/9], k++]; k]; f[4] = 0; Array[f, 100]
-
PARI
isok(k, dp) = ispseudoprime(fromdigits(concat(dp, vector(k, i, 7)))); a(n) = {if (prime(n) == 7, return(0)); my(k=1, p=prime(n)); while (!ispseudoprime(p*10^k+7*(10^k-1)/9), k++); k;} \\ Michel Marcus, Jan 20 2021
Formula
a(n)=k for the least k such that prime(n)*10^k+7*(10^k-1)/9 is prime, where prime(n) is the n-th prime.
Comments