A257462 Number A(n,k) of factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 10, 3, 1, 1, 1, 1, 26, 70, 25, 3, 1, 1, 1, 1, 71, 566, 465, 49, 4, 1, 1, 1, 1, 197, 4781, 11131, 2505, 103, 4, 1, 1, 1, 1, 554, 41357, 297381, 190131, 12652, 184, 5, 1, 1, 1, 1, 1570, 364470, 8349223, 16669641, 2928876, 57232, 331, 5, 1, 1
Offset: 0
Examples
A(4,2) = 3: (2*3)^4 = 1296 = 6*6*6*6 = 9*6*6*4 = 9*9*4*4. A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8. A(2,4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 4, 10, 26, ... 1, 1, 2, 10, 70, 566, ... 1, 1, 3, 25, 465, 11131, ... 1, 1, 3, 49, 2505, 190131, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..377 (antidiagonals n=0..26)
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, i, k) option remember; `if`(n=1, 1, add(`if`(d>i or bigomega(d)<>k, 0, b(n/d, d, k)), d=divisors(n) minus {1})) end: A:= (n, k)-> b(mul(ithprime(i), i=1..k)^n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..8);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 1, 1, Sum[If[d > i || PrimeOmega[d] != k, 0, b[n/d, d, k]], {d, Divisors[n] // Rest}]]; A[n_, k_] := Module[ {p = Product[Prime[i], {i, 1, k}]^n}, b[p, p, k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
Comments