cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257462 Number A(n,k) of factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 10, 3, 1, 1, 1, 1, 26, 70, 25, 3, 1, 1, 1, 1, 71, 566, 465, 49, 4, 1, 1, 1, 1, 197, 4781, 11131, 2505, 103, 4, 1, 1, 1, 1, 554, 41357, 297381, 190131, 12652, 184, 5, 1, 1, 1, 1, 1570, 364470, 8349223, 16669641, 2928876, 57232, 331, 5, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of n copies each of 1, 2, ..., k into n multisets of size k.

Examples

			A(4,2) = 3: (2*3)^4 = 1296 = 6*6*6*6 = 9*6*6*4 = 9*9*4*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
Square array A(n,k) begins:
  1, 1, 1,  1,    1,      1, ...
  1, 1, 1,  1,    1,      1, ...
  1, 1, 2,  4,   10,     26, ...
  1, 1, 2, 10,   70,    566, ...
  1, 1, 3, 25,  465,  11131, ...
  1, 1, 3, 49, 2505, 190131, ...
		

Crossrefs

Columns k=0+1, 2-5 give: A000012, A008619, A254233, A257114, A257518.
Rows n=0+1, 2-3 give: A000012, A257520, A333902.
Main diagonal gives A334286.
Cf. A257463, A333901 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n) minus {1}))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..k)^n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 1, 1, Sum[If[d > i || PrimeOmega[d] != k, 0, b[n/d, d, k]], {d, Divisors[n] // Rest}]]; A[n_, k_] := Module[ {p = Product[Prime[i], {i, 1, k}]^n}, b[p, p, k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)