cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257464 Number of factorizations of m^n into 3 factors, where m is a product of exactly 3 distinct primes and each factor is a product of n primes (counted with multiplicity).

Original entry on oeis.org

1, 1, 5, 10, 23, 40, 73, 114, 180, 262, 379, 521, 712, 938, 1228, 1567, 1986, 2469, 3052, 3715, 4499, 5383, 6410, 7558, 8875, 10335, 11991, 13816, 15865, 18110, 20611, 23336, 26350, 29620, 33213, 37095, 41338, 45904, 50870, 56197, 61964, 68131, 74782, 81873
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Examples

			a(2) = 5: (2*3*5)^2 = 900 = 10*10*9 = 15*10*6 = 15*15*4 = 25*6*6 = 25*9*4.
a(4) = 23: (2*3*5)^4 = 810000 = 100*90*90 = 100*100*81 = 135*100*60 = 150*90*60 = 150*100*54 = 150*135*40 = 150*150*36 = 225*60*60 = 225*90*40 = 225*100*36 = 225*150*24 = 225*225*16 = 250*60*54 = 250*81*40 = 250*90*36 = 250*135*24 = 375*54*40 = 375*60*36 = 375*90*24 = 375*135*16 = 625*36*36 = 625*54*24 = 625*81*16.
		

Crossrefs

Row n=3 of A257463.

Programs

  • Maple
    a:= n-> coeff(series(-(x^6-x^5+2*x^4+2*x^3+2*x^2-x+1)/
            ((x^2+x+1)*(x+1)^2*(x-1)^5), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[Series[-(x^6 - x^5 + 2 x^4 + 2 x^3 + 2 x^2 - x + 1)/((x^2 + x + 1) (x + 1)^2*(x - 1)^5), {x, 0, 43}], x] (* Michael De Vlieger, Jul 02 2018 *)
    LinearRecurrence[{2,1,-3,-1,1,3,-1,-2,1},{1,1,5,10,23,40,73,114,180},50] (* Harvey P. Dale, Jan 08 2022 *)

Formula

G.f.: -(x^6-x^5+2*x^4+2*x^3+2*x^2-x+1)/((x^2+x+1)*(x+1)^2*(x-1)^5).