A257493 Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, ... 1, 6, 21, 55, 120, 231, 406, ... 1, 24, 282, 2008, 10147, 40176, 132724, ... 1, 120, 6210, 153040, 2224955, 22069251, 164176640, ... 1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..20, flattened
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- Dennis Pixton, Ehrhart polynomials for n = 1, ..., 9
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n=1, 1, add( `if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n))) end: A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k): seq(seq(A(n, d-n), n=0..d), d=0..8);
-
Mathematica
b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
-
PARI
T(n, k)={ local(M=Map(Mat([n, 1]))); my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m))))); for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2]) } \\ Andrew Howroyd, Apr 04 2020
-
Sage
bigomega = sloane.A001222 @cached_function def b(n, k): if n == 1: return 1 return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors()) def A(n, k): return b(prod(nth_prime(i) for i in (1..n))^k, k) [A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
-
Sage
from sage.combinat.integer_matrices import IntegerMatrices [IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
Comments