A257499 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 2^n*(6*k-3+2*(-1)^n))/3, n,k >= 1.
1, 7, 5, 3, 15, 9, 27, 19, 23, 13, 11, 59, 35, 31, 17, 107, 75, 91, 51, 39, 21, 43, 235, 139, 123, 67, 47, 25, 427, 299, 363, 203, 155, 83, 55, 29, 171, 939, 555, 491, 267, 187, 99, 63, 33, 1707, 1195, 1451, 811, 619, 331, 219, 115, 71, 37
Offset: 1
Examples
Array A begins: . 1 5 9 13 17 21 25 29 33 37 . 7 15 23 31 39 47 55 63 71 79 . 3 19 35 51 67 83 99 115 131 147 . 27 59 91 123 155 187 219 251 283 315 . 11 75 139 203 267 331 395 459 523 587 . 107 235 363 491 619 747 875 1003 1131 1259 . 43 299 555 811 1067 1323 1579 1835 2091 2347 . 427 939 1451 1963 2475 2987 3499 4011 4523 5035 . 171 1195 2219 3243 4267 5291 6315 7339 8363 9387 . 1707 3755 5803 7851 9899 11947 13995 16043 18091 20139
Links
- Max Alekseyev, Proof of conjecture in A257499, Sequence fanatics mailing list, April 29 and May 01, 2015
Programs
-
Mathematica
(* Array: *) Grid[Table[(1 + 2^n*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]] (* Array antidiagonals flattened: *) Flatten[Table[(1 + 2^(n - k + 1)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]
Comments