A257547 Even side of integer-sided triangle such that the area is an integer and two sides are twin primes.
4, 20, 452, 2180, 4052, 6500, 27380, 43220, 118100, 130052, 183620, 281252, 357860, 399620, 410420, 455060, 656660, 1134020, 1401140, 1609220, 1630820, 2142452, 4482020, 7258052, 8446052, 8694452, 9618500, 10424180, 11838980, 12370340, 12852452, 13343780
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn=40000;lst={};Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2;If[IntegerQ[s],area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]);If[area2>0&&IntegerQ[Sqrt[area2]]&&Prime[c+1]==Prime[c]+2,AppendTo[lst,2*Prime[c]-2]]],{c,nn}];Union[lst]
-
PARI
for(k=1,1e4,if(isprime(k^2+2) && isprime(k^2+4), print1(2*k^2+2", "))) \\ Charles R Greathouse IV, May 21 2015
Comments