cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257547 Even side of integer-sided triangle such that the area is an integer and two sides are twin primes.

Original entry on oeis.org

4, 20, 452, 2180, 4052, 6500, 27380, 43220, 118100, 130052, 183620, 281252, 357860, 399620, 410420, 455060, 656660, 1134020, 1401140, 1609220, 1630820, 2142452, 4482020, 7258052, 8446052, 8694452, 9618500, 10424180, 11838980, 12370340, 12852452, 13343780
Offset: 1

Views

Author

Michel Lagneau, Apr 29 2015

Keywords

Comments

The sides of each triangle are of the form (k^2+2, k^2+4, 2k^2+2)=(p, p+2,q) where p and p+2 primes (see A257049) => the value of the even side is q = 2k^2+2 and the greatest prime divisor of a(n) is equal to the greatest prime divisor of p-1.
The following table gives the first values (n, a(n)=q, A, p, p+2) where A is the integer area.
+----+--------+--------+------+-------+
| n | a(n)=q | A | p | p+2 |
+-------------+--------+------+-------+
| 1 | 4 | 6 | 3 | 5 |
| 2 | 20 | 66 | 11 | 13 |
| 3 | 452 | 6810 | 227 | 229 |
| 4 | 2180 | 72006 | 1091 | 1093 |
| 5 | 4052 | 182430 | 2027 | 2029 |
| 6 | 6500 | 370614 | 3251 | 3253 |
+----+--------+--------+------+-------+
Note that q = 2*p - 2. - Zak Seidov, May 21 2015
Alternatively, numbers 2k^2 + 2 such that k^2 + 2 and k^2 + 4 are prime. - Charles R Greathouse IV, May 21 2015

Crossrefs

Programs

  • Mathematica
    nn=40000;lst={};Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2;If[IntegerQ[s],area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]);If[area2>0&&IntegerQ[Sqrt[area2]]&&Prime[c+1]==Prime[c]+2,AppendTo[lst,2*Prime[c]-2]]],{c,nn}];Union[lst]
  • PARI
    for(k=1,1e4,if(isprime(k^2+2) && isprime(k^2+4), print1(2*k^2+2", "))) \\ Charles R Greathouse IV, May 21 2015