A257567 a(n) is the largest exponent k such that 3^k divides (prime(n)^2 + 2).
1, 0, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 2, 1, 2, 2, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 2
Offset: 1
Keywords
Examples
a(1) = 1 because p=prime(1)=2 and p^2 + 2 = 6 = 3^1*2, a(2) = 0 because p=prime(2)=3 and p^2 + 2 = 11 = 3^0*11, a(3) = 3 because p=prime(3)=5 and p^2 + 2 = 27 = 3^3.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[IntegerExponent[Prime[k]^2 + 2, 3], {k, 100}]
-
PARI
a(n) = valuation(prime(n)^2+2, 3); \\ Michel Marcus, May 01 2015
Comments