A257278 Prime powers p^m with p <= m.
4, 8, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 823543, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a257278 n = a257278_list !! (n-1) a257278_list = f (singleton (4, 2)) 27 (tail a000040_list) where f s pp ps@(p:ps'@(p':_)) | qq > pp = pp : f (insert (pp * p, p) s) (p' ^ p') ps' | otherwise = qq : f (insert (qq * q, q) s') pp ps where ((qq, q), s') = deleteFindMin s -- Reinhard Zumkeller, May 01 2015
-
Mathematica
seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)
-
PARI
L=List();lim=10;forprime(p=1,lim,for(n=p,lim*log(lim)\log(p),listput(L,p^n)));listsort(L);L
Formula
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^(p-1)*(p-1)) = 0.55595697220270661763... - Amiram Eldar, Oct 24 2020
Comments