cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A257572 Prime root of n-th term in A257278.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 3, 7, 2, 3, 5, 2, 2, 3, 7, 2, 5, 3, 2, 2, 7, 3, 5, 2, 3, 2, 5, 2, 7, 3, 2, 2, 3, 5, 7, 2, 3, 2, 5, 2, 3, 7, 2, 5, 3, 2, 2, 3, 7, 2, 5, 2, 3, 11, 2, 7, 5, 3, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 01 2015

Keywords

Crossrefs

Programs

  • Haskell
    a257572 = a020639 . a257278
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2, r}, While[p^p <= lim, r = Range[p, Log[p, lim]]; AppendTo[s, Transpose[{ConstantArray[p, Length[r]], p^r}]]; p = NextPrime[p]]; SortBy[Flatten[s, 1], Last][[;; , 1]]]; seq[10^13] (* Amiram Eldar, Apr 14 2025 *)

Formula

a(n) = A020639(A257278(n)).
A257278(n) = a(n) ^ A257573(n).
a(n) <= A257573(n) by definition of A257278.

A257573 Exponents in A257278 = powers of primes p^m, p <= m.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 4, 7, 5, 8, 9, 6, 10, 11, 7, 5, 12, 8, 13, 6, 14, 9, 15, 10, 16, 7, 17, 11, 18, 8, 19, 12, 7, 20, 13, 9, 21, 22, 14, 8, 23, 10, 15, 24, 25, 9, 16, 11, 26, 17, 27, 12, 28, 10, 18, 29, 30, 19, 13, 11, 31, 20, 32, 14, 33, 21, 12, 34, 15, 22
Offset: 1

Views

Author

Reinhard Zumkeller, May 01 2015

Keywords

Crossrefs

Programs

  • Haskell
    a257573 = a001222 . a257278
    
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2, r}, While[p^p <= lim, r = Range[p, Log[p, lim]]; AppendTo[s, Transpose[{r, p^r}]]; p = NextPrime[p]]; SortBy[Flatten[s, 1], Last][[;; , 1]]]; seq[10^13] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    apply(bigomega,A257278) \\ (A257278 assumed to be defined as vector). - M. F. Hasler, May 02 2015

Formula

a(n) = A001222(A257278(n)).
A257278(n) = A257572(n) ^ a(n).
A257572(n) <= a(n) by definition of A257278.

Extensions

Edited by M. F. Hasler, May 02 2015

A068936 Numbers having the sum of distinct prime factors not greater than the sum of exponents in prime factorization, A008472(k) <= A001222(k).

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 48, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 320, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 800, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1792, 1944, 2000, 2048, 2187, 2304, 2560, 2592, 2916
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Comments

The product of any two terms is also a term. - Amiram Eldar, May 14 2025

Examples

			a(5) = 27 = 3^3, 3 = 3.
a(10) = 81 = 3^4, 3 < 4.
a(100) = 16000 = 2^7 * 5^3,  2+5 < 7+3.
a(1000) = 10321920 = 2^15 * 3^2 * 5 * 7, 2+3+5+7 < 15+2+1+1.
		

Crossrefs

Programs

  • Haskell
    a068936 n = a068936_list !! (n-1)
    a068936_list = [x | x <- [1..], a008472 x <= a001222 x]
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    fQ[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f >= Plus @@ First /@ f]; Select[ Range@3000, fQ@ # &] (* Robert G. Wilson v, Jan 16 2006 *)
    Select[Range@ 3000, First@ Differences@ Map[Total, Transpose@ FactorInteger@ #] >= 0 &] (* Michael De Vlieger, Dec 08 2016 *)
  • PARI
    isok(k) = {my(f = factor(k)); vecsum(f[,1]) <= bigomega(f);} \\ Amiram Eldar, May 14 2025

Extensions

More terms from Robert G. Wilson v, Jan 16 2006

A192135 Prime powers p^e with p < e.

Original entry on oeis.org

8, 16, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625, 14348907
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Crossrefs

Complement to A074583 with respect to A000961.

Programs

  • Maple
    A192135 := proc(nmax) local s ,i,p,e ; s := {} ; for i from 1 do p := ithprime(i) ; if p^(p+1) > nmax then break; end if; for e from p+1 do if p^e > nmax then break; end if; s := s union {p^e} ; end do: end do: sort(s) ; end proc:
    A192135(20000000) ; # R. J. Mathar, Jul 09 2011
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p+1, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)

Formula

a(n) = A000961(A192187(n)).
A095874(a(n)) = A192187(n).
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^p*(p-1)) = 0.26859872089648243789... . - Amiram Eldar, Apr 14 2025

A122494 Numbers of the form a^b with 2<=a<=b.

Original entry on oeis.org

4, 8, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 131072, 177147, 262144, 279936, 390625, 524288, 531441, 823543, 1048576, 1594323, 1679616
Offset: 1

Views

Author

Paul Stoeber (pstoeber(AT)uni-potsdam.de), Sep 16 2006

Keywords

Examples

			279936 is there because it is 6^7.
		

Crossrefs

Subsequences: A000312, A257278.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a122494 n = a122494_list !! (n-1)
    a122494_list = f (singleton (4, 2)) 27 [3..] where
       f s uu us@(u:us'@(u':_))
         | vv > uu = uu : f (insert (uu * u, u) s) (u' ^ u') us'
         | vv < uu = vv : f (insert (vv * v, v) s') uu us
         | otherwise = vv : f (insert (vv * v, v) s') (u' ^ u') us'
         where ((vv, v), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 01 2015

A257279 Zeroless prime powers p^m with p <= m.

Original entry on oeis.org

4, 8, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 2187, 3125, 6561, 8192, 15625, 16384, 19683, 32768, 65536, 78125, 177147, 262144, 524288, 531441, 823543, 1594323, 1953125, 4782969, 9765625, 16777216, 33554432, 48828125, 134217728, 268435456, 282475249, 1162261467
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2015

Keywords

Comments

A few years ago, challenges had been launched to find a prime power p^n, n>1 as large as possible, cf. links. I have remarked that it is easy to find arbitrarily large examples by taking the square of very large primes, rather than high powers of smaller primes, and suggested a merit function to take into account and penalize such "trivial" solutions. This led to a new challenge including the condition n > p. This sequence lists such numbers with the last condition relaxed to n >= p, which is sufficient to make the search nontrivial but includes a few more terms, namely the zeroless powers p^p (A051674 intersect A052382).
Possibly is a(80) = 19^44 the largest term; there are no greater ones in the first 500000 terms of A257278. - Reinhard Zumkeller, May 01 2015

Crossrefs

Equals A257278 \ A011540 = intersection of A052382 and A257278.
Subsequence of A025475 \ A011540 and of A195943, see also A168046.

Programs

  • Haskell
    a257279 n = a257279_list !! (n-1)
    a257279_list = filter ((== 1) . a168046) a257278_list
    -- Reinhard Zumkeller, May 01 2015
  • PARI
    is(n)=vecmin(digits(n)) && isprimepower(n,&n)>=n
    
  • PARI
    L=List();lim=10;forprime(p=1,lim,for(n=p,lim*log(lim)\log(p),listput(L,p^n)));listsort(select(n->vecmin(digits(n)),L));
    
Showing 1-6 of 6 results.