A257623 Triangle read by rows: T(n,k) = t(n-k, k), where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 5*n + 3.
1, 3, 3, 9, 48, 9, 27, 501, 501, 27, 81, 4494, 13026, 4494, 81, 243, 37815, 250230, 250230, 37815, 243, 729, 309324, 4122735, 9008280, 4122735, 309324, 729, 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187
Offset: 0
Examples
Array, t(n,k), begins as: 1, 3, 9, 27, 81, ... A000244; 3, 48, 501, 4494, 37815, ...; 9, 501, 13026, 250230, 4122735, ...; 27, 4494, 250230, 9008280, 256971945, ...; 81, 37815, 4122735, 256971945, 11820709470, ...; 243, 309324, 62256627, 6368680566, 450199373658, ...; 729, 2498649, 891791568, 144065371932, 15108742867890, ...; Triangle, T(n,k), begins as: 1; 3, 3; 9, 48, 9; 27, 501, 501, 27; 81, 4494, 13026, 4494, 81; 243, 37815, 250230, 250230, 37815, 243; 729, 309324, 4122735, 9008280, 4122735, 309324, 729; 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
t[n_, k_, p_, q_]:= t[n, k, p, q]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+ q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]]; T[n_, k_, p_, q_]= t[n-k,k,p,q]; Table[T[n,k,5,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2022 *)
-
Sage
@CachedFunction def t(n,k,p,q): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q) def A257623(n,k): return t(n-k,k,5,3) flatten([[A257623(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 27 2022
Formula
T(n,k) = t(n-k, k) where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 3.
Sum_{k=0..n} T(n, k) = A008548(n).
From G. C. Greubel, Feb 27 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)