A257626 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.
1, 6, 6, 36, 108, 36, 216, 1404, 1404, 216, 1296, 15876, 33696, 15876, 1296, 7776, 166212, 642492, 642492, 166212, 7776, 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656, 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936
Offset: 0
Examples
Triangle begins as: 1; 6, 6; 36, 108, 36; 216, 1404, 1404, 216; 1296, 15876, 33696, 15876, 1296; 7776, 166212, 642492, 642492, 166212, 7776; 46656, 1659204, 10701720, 19274760, 10701720, 1659204, 46656; 279936, 16052580, 163263924, 481752360, 481752360, 163263924, 16052580, 279936;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]]; Table[T[n,k,3,6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
Sage
def T(n,k,a,b): # A257626 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b) flatten([[T(n,k,3,6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 6.
Sum_{k=0..n} T(n, k) = A051609(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 6. - G. C. Greubel, Mar 20 2022