A257627 Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(x) = 7*x + 3.
1, 3, 3, 9, 60, 9, 27, 753, 753, 27, 81, 8178, 25602, 8178, 81, 243, 84291, 631506, 631506, 84291, 243, 729, 852144, 13348623, 30312288, 13348623, 852144, 729, 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187
Offset: 0
Examples
Array t(n, k) begins as: 1, 3, 9, 27, 81, ... A000244; 3, 60, 753, 8178, 84291, ...; 9, 753, 25602, 631506, 13348623, ...; 27, 8178, 631506, 30312288, 1141302225, ...; 81, 84291, 13348623, 1141302225, 70760737950, ...; 243, 852144, 259308063, 37244959794, 3608891348622, ...; 729, 8554245, 4793178096, 1109572049376, 161806374029202, ...; Triangle, T(n, k) begins as: 1; 3, 3; 9, 60, 9; 27, 753, 753, 27; 81, 8178, 25602, 8178, 81; 243, 84291, 631506, 631506, 84291, 243; 729, 852144, 13348623, 30312288, 13348623, 852144, 729; 2187, 8554245, 259308063, 1141302225, 1141302225, 259308063, 8554245, 2187;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
f[n_]:= 7*n+3; t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]]; T[n_, k_]= t[n-k, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
Sage
def f(n): return 7*n+3 @CachedFunction def t(n,k): if (n<0 or k<0): return 0 elif (n==0 and k==0): return 1 else: return f(k)*t(n-1, k) + f(n)*t(n, k-1) def A257627(n,k): return t(n-k,k) flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
Formula
T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 3.
Sum_{k=0..n} T(n, k) = A049209(n).
From G. C. Greubel, Feb 22 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)