cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257635 Triangle with n-th row polynomial equal to Product_{k = 1..n} (x + n + k).

Original entry on oeis.org

1, 2, 1, 12, 7, 1, 120, 74, 15, 1, 1680, 1066, 251, 26, 1, 30240, 19524, 5000, 635, 40, 1, 665280, 434568, 117454, 16815, 1345, 57, 1, 17297280, 11393808, 3197348, 495544, 45815, 2527, 77, 1, 518918400, 343976400, 99236556, 16275700, 1659889, 107800, 4354, 100, 1
Offset: 0

Views

Author

Peter Bala, Nov 05 2015

Keywords

Comments

The row polynomials are a Sheffer sequence. For the associated polynomial sequence of binomial type see A038455.

Examples

			Triangle begins:
[0]       1;
[1]       2,      1;
[2]      12,      7,      1;
[3]     120,     74,     15,     1;
[4]    1680,   1066,    251,    26,    1;
[5]   30240,  19524,   5000,   635,   40,  1;
[6]  665280, 434568, 117454, 16815, 1345, 57, 1;
  ...
		

Crossrefs

Cf. A001813 (column 0), A005449 (first subdiagonal), A098118 (column 1).
Cf. A006963 (row sums), A000407 (alternating row sum).

Programs

  • Maple
    seq(seq(coeff(product(n + x + k, k = 1 .. n), x, i), i = 0..n), n = 0..8);
    # Alternative:
    p := n -> n!*hypergeom([-n, -x + n], [-n], 1):
    seq(seq((-1)^k*coeff(simplify(p(n)), x, k), k=0..n), n=0..6); # Peter Luschny, Nov 27 2021
  • Mathematica
    p[n_, x_] := FunctionExpand[Gamma[2*n + x + 1] / Gamma[n + x + 1]];
    Table[CoefficientList[p[n, x], x], {n,0,8}] // Flatten (* Peter Luschny, Mar 21 2022 *)

Formula

E.g.f.: A(x,t) = B(t)*C(t)^x = 1 + (2 + x)*t + (3 + x)*(4 + x)*t^2/2! + (4 + x)*(5 + x)*(6 + x)*t^3/3! + ..., where B(t) = 1/sqrt(1 - 4*t) is the o.g.f. for A000984 and C(t) = (1 - sqrt(1 - 4*t))/(2*t) is the o.g.f. for A000108.
n-th row polynomial: n!*binomial(2*n + x,n).
T(n, k) = (-1)^k*n!*[x^k] hypergeom([-n, -x + n], [-n], 1). - Peter Luschny, Nov 27 2021
T(n, k) = [x^k] Gamma(2*n + x + 1) / Gamma(n + x + 1). - Peter Luschny, Mar 21 2022