A257655 Expansion of f(x^3, x^9) * f(x^6, x^6) / f(-x, -x^2) in powers of x where f(,) is Ramanujan's general theta function.
1, 1, 2, 4, 6, 9, 16, 22, 33, 50, 70, 98, 138, 188, 256, 348, 463, 614, 812, 1060, 1378, 1785, 2292, 2932, 3740, 4736, 5978, 7522, 9416, 11750, 14620, 18116, 22384, 27585, 33878, 41500, 50714, 61794, 75120, 91118, 110247, 133110, 160390, 192836, 231400, 277162
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 22*x^7 + 33*x^8 + ... G.f. = q + q^4 + 2*q^7 + 4*q^10 + 6*q^13 + 9*q^16 + 16*q^19 + 22*q^22 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A097196.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^6] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8) QPochhammer[ x]), {x, 0, n}]; eta[q_] := q^(1/24)*QPochhammer[q]; With[{nmax = 50}, CoefficientList[ Series[q^(-1/3)*eta[q^12]^5/(eta[q]*eta[q^3]*eta[q^24]^2), {x, 0, nmax}], x]] (* G. C. Greubel, Aug 02 2018 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^12 + A)^5 / (eta(x + A) * eta(x^3 + A) * eta(x^24 + A)^2), n))};
Formula
Expansion of f(-x, -x^5) * f(x^6, x^6) / f(-x, -x) in powers of x where f(,) is Ramanujan's general theta function.
Expansion of q^(-1/3) * eta(q^12)^5 / (eta(q) * eta(q^3) * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, -3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, -1, ...].
a(n) = A097196(2*n).
Comments