cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257670 Minimum term in the sigma(x) -> x subtree whose root is n.

Original entry on oeis.org

1, 2, 2, 2, 5, 5, 2, 2, 9, 10, 11, 5, 9, 9, 2, 16, 17, 10, 19, 19, 21, 22, 23, 2, 25, 26, 27, 5, 29, 29, 16, 16, 33, 34, 35, 22, 37, 37, 10, 27, 41, 19, 43, 43, 45, 46, 47, 33, 49, 50, 51, 52, 53, 34, 55, 5, 49, 58, 59, 2, 61, 61, 16, 64, 65, 66, 67, 67, 69
Offset: 1

Views

Author

Michel Marcus, May 03 2015

Keywords

Examples

			We have the following trees (a <- b means sigma(a) = b):
  2 <-- 3 <-- 4 <-- 7 <-- 8 <-- 15 <-- 24 <-- 60 <-- ...
                    9 <-- 13 <-- 14 <-’
  5 <-- 6 <-- 12 <-- 28 <-- 56 <-- 120 <-- ...
        11 <-’             /
       10 <-- 18 <-- 39 <-’
The number 1 has strictly speaking an arrow to itself, so it is not part of a tree. (For all n > 1, sigma(n) > n, so no other fixed point or longer "cycle" can exist.) But actually we rather consider connected components, and let a(1) = 1 as the smallest element of this connected component.
a(2) = 2, since there is no smaller x such that sigma(x) = 2: the subtree with root 2 is reduced to a single node: 2. Similarly, a(m) = m for all m in A007369.
For n=3, since sigma(2) = 3, the tree whose root is 3 has 2 nodes: 2 and 3, and the smallest one is 2, hence a(3) = 2.
Similarly, although 24 occurs directly first at sigma(14), it is also reached from 15 which is in turn reached, via intermediate steps, from 2. Thus, the subtree with root 24 has as 2 as smallest element, whence a(24) = 2.
		

Crossrefs

Cf. A000203 (sigma), A007369 (sigma(x) = n has no solution).
Cf. A216200 (number of disjoint trees), A257348 (minimal node of all trees).
Cf. A257669 (number of terms in current tree).

Programs

  • PARI
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, my(s = i); while (s <= nn, if (v[s] == 0, v[s] = i); s = sigma(s););); for (i=1, nn, if (v[i] == 0, v[i] = i);); v;} \\ Michel Marcus, Nov 19 2019
    
  • PARI
    A257670(n)=if(n>2,vecmin(concat(apply(self,invsigma(n)),n)),n) \\ See Alekseyev-link for invsigma(). - David A. Corneth and M. F. Hasler, Nov 20 2019

Formula

a(m) = m for m in A007369: sigma(x) = m has no solution. [Corrected by M. F. Hasler, Nov 19 2019]
a(A007497(n)) = 2; a(A051572(n)) = 5; a(A257349(n)) = 16. (These sequences being the trajectory of 2, 5 resp. 16 under iterations of sigma = A000203.)

Extensions

Edited by M. F. Hasler, Nov 19 2019