A257673 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n is the inverse binomial transform of the n-th row of array A255961, which has the Euler transform of (j->j*k) in column k.
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 13, 21, 9, 1, 0, 24, 62, 45, 12, 1, 0, 48, 162, 174, 78, 15, 1, 0, 86, 396, 576, 376, 120, 18, 1, 0, 160, 917, 1719, 1509, 695, 171, 21, 1, 0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1, 0, 500, 4380, 12441, 17234, 13473, 6309, 1792, 300, 27, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3, 1; 0, 6, 6, 1; 0, 13, 21, 9, 1; 0, 24, 62, 45, 12, 1; 0, 48, 162, 174, 78, 15, 1; 0, 86, 396, 576, 376, 120, 18, 1; 0, 160, 917, 1719, 1509, 695, 171, 21, 1; 0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k*add( A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12); # Uses function PMatrix from A357368. PMatrix(10, A000219); # Peter Luschny, Oct 19 2022
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255961(n,k-i).
G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j)^j)^k.
Comments