cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A257675 a(n) = A257673(2n,n).

Original entry on oeis.org

1, 3, 21, 174, 1509, 13473, 122580, 1129999, 10518477, 98644395, 930607321, 8821717743, 83960385396, 801783097911, 7678690148647, 73721697254874, 709323064431597, 6837868454315828, 66028546945097793, 638555320797561440, 6183787002091288969, 59957399899953193063
Offset: 0

Views

Author

Alois P. Heinz, May 03 2015

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
          add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..22);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*
         DivisorSigma[2, j], {j, 1, n}]/n];
    b[n_, k_] := b[n, k] = If[k < 2, g[n+1], With[{q = Quotient[k, 2]},
         Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

a(n) = A257673(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 9.93288639318036180192949205242384178223421389697248991016311001938239..., c = 0.31807008223273549425589833682845775837952038959... . - Vaclav Kotesovec, May 19 2015
a(n) = [x^(2*n)] (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^n. - Ilya Gutkovskiy, Feb 13 2021

A321947 Column k=2 of triangle A257673.

Original entry on oeis.org

1, 6, 21, 62, 162, 396, 917, 2036, 4380, 9152, 18694, 37380, 73444, 141918, 270370, 508178, 943876, 1733468, 3151396, 5674152, 10126435, 17921016, 31468623, 54848750, 94935565, 163232096, 278903915, 473693432, 799949111, 1343550666, 2244807927, 3731885232
Offset: 2

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=2 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..35);
  • Mathematica
    A321947[n_] := Module[{nn = n}, SeriesCoefficient[Product[1/(1 - x^i)^(2 i), {i, 1, nn}], {x, 0, nn}] - 2*SeriesCoefficient[Product[(1 - x^k)^-k, {k, nn}], {x, 0, nn}]]; Table[A321947[n], {n, 2, 33}] (* Robert P. P. McKone, Jan 30 2021 *)
    b[n_, k_] := b[n, k] = If[n == 0, 1, k*Sum[
         b[n - j, k]*DivisorSigma[2, j], {j, 1, n}]/n];
    a[n_] := With[{k = 2}, Sum[b[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]];
    Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^2. - Ilya Gutkovskiy, Jan 30 2021
a(n) = A161870(n) - 2*A000219(n). - Vaclav Kotesovec, Jan 30 2021

A321948 Column k=3 of triangle A257673.

Original entry on oeis.org

1, 9, 45, 174, 576, 1719, 4761, 12441, 31050, 74593, 173547, 392787, 867876, 1877322, 3984636, 8314434, 17082510, 34604523, 69194309, 136709688, 267111510, 516515227, 989147760, 1877103486, 3531796959, 6591644601, 12208734552, 22449066710, 40995144288
Offset: 3

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=3 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(3):
    seq(a(n), n=3..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^3. - Ilya Gutkovskiy, Jan 30 2021

A321949 Column k=4 of triangle A257673.

Original entry on oeis.org

1, 12, 78, 376, 1509, 5340, 17234, 51796, 147054, 398388, 1037560, 2612520, 6387965, 15221412, 35446980, 80865304, 181076216, 398660292, 864186408, 1846759404, 3894731430, 8113669352, 16710519860, 34049851236, 68687627812, 137257430140, 271842916654
Offset: 4

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=4 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(4):
    seq(a(n), n=4..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^4. - Ilya Gutkovskiy, Jan 30 2021

A321950 Column k=5 of triangle A257673.

Original entry on oeis.org

1, 15, 120, 695, 3285, 13473, 49730, 169115, 538440, 1623660, 4677121, 12955065, 34682730, 90113220, 227992870, 563267203, 1361992935, 3229643480, 7522847555, 17237982025, 38905739524, 86585024910, 190193593830, 412712252535, 885382820550, 1879084411753
Offset: 5

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=5 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):
    seq(a(n), n=5..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^5. - Ilya Gutkovskiy, Jan 30 2021

A321951 Column k=6 of triangle A257673.

Original entry on oeis.org

1, 18, 171, 1158, 6309, 29466, 122580, 465738, 1644516, 5464892, 17253369, 52128540, 151592391, 426265836, 1163373243, 3091338000, 8018585046, 20348618814, 50615278427, 123608650182, 296794147017, 701525018576, 1634144413185, 3755097200094, 8519488746222
Offset: 6

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=6 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
    seq(a(n), n=6..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^6. - Ilya Gutkovskiy, Jan 30 2021

A321952 Column k=7 of triangle A257673.

Original entry on oeis.org

1, 21, 231, 1792, 11067, 58044, 268940, 1129999, 4385136, 15928948, 54711958, 179090772, 562156203, 1700628930, 4978677738, 14153099499, 39180254316, 105881154624, 279906223856, 725158329175, 1844006226090, 4608929551309, 11336379967178, 27469729015029
Offset: 7

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=7 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
    seq(a(n), n=7..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^7. - Ilya Gutkovskiy, Jan 30 2021

A321953 Column k=8 of triangle A257673.

Original entry on oeis.org

1, 24, 300, 2624, 18126, 105552, 539408, 2485016, 10518477, 41482336, 154055260, 543239064, 1830924554, 5929728456, 18534968236, 56121729792, 165117049094, 473276306552, 1324582728412, 3626879184272, 9732325392280, 25631811881168, 66342981204768
Offset: 8

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=8 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
    seq(a(n), n=8..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^8. - Ilya Gutkovskiy, Jan 31 2021

A321954 Column k=9 of triangle A257673.

Original entry on oeis.org

1, 27, 378, 3681, 28134, 180198, 1007370, 5051790, 23173047, 98644395, 394006761, 1489460724, 5365964511, 18526724685, 61587671283, 197885754837, 616568620176, 1868127089697, 5517376711191, 15917134652829, 44935916034951, 124340811582540, 337706753653476
Offset: 9

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=9 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
    seq(a(n), n=9..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^9. - Ilya Gutkovskiy, Jan 31 2021

A321955 Column k=10 of triangle A257673.

Original entry on oeis.org

1, 30, 465, 4990, 41820, 292296, 1775075, 9629800, 47604225, 217630430, 930607321, 3755443890, 14405010340, 52827550470, 186123730845, 632552752322, 2080824994210, 6644958372540, 20652164516930, 62605166996300, 185464736482827, 537841680016510, 1529116657680575
Offset: 10

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=10 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
    seq(a(n), n=10..35);

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^10. - Ilya Gutkovskiy, Jan 31 2021
Showing 1-10 of 12 results. Next