cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257674 INVERT transform of planar partitions.

Original entry on oeis.org

1, 1, 4, 13, 44, 144, 478, 1573, 5193, 17118, 56457, 186153, 613865, 2024192, 6674843, 22010313, 72579382, 239331323, 789198395, 2602391853, 8581422014, 28297352194, 93310894654, 307693910316, 1014624748161, 3345738548716, 11032617200372, 36380201398917
Offset: 0

Views

Author

Alois P. Heinz, May 03 2015

Keywords

Crossrefs

Row sums of A257673.
Cf. A000219.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..36);
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[g[n-j] DivisorSigma[2, j], {j, 1, n}]/n];
    a[n_] := a[n] = If[n==0, 1, Sum[a[n-i] g[i], {i, 1, n}]];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A257673(n,k).
a(n) ~ c * d^n, where d = 3.2975132503126723336836261261699651439543806296893328114462016186843..., c = 0.3713883419445088444000361183895708557141471246022776707501762842135... . - Vaclav Kotesovec, May 19 2015
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^k)^k). - Ilya Gutkovskiy, Oct 18 2018