A257674 INVERT transform of planar partitions.
1, 1, 4, 13, 44, 144, 478, 1573, 5193, 17118, 56457, 186153, 613865, 2024192, 6674843, 22010313, 72579382, 239331323, 789198395, 2602391853, 8581422014, 28297352194, 93310894654, 307693910316, 1014624748161, 3345738548716, 11032617200372, 36380201398917
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1930
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( g(n-j)*numtheory[sigma][2](j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i)*g(i), i=1..n)) end: seq(a(n), n=0..36);
-
Mathematica
g[n_] := g[n] = If[n==0, 1, Sum[g[n-j] DivisorSigma[2, j], {j, 1, n}]/n]; a[n_] := a[n] = If[n==0, 1, Sum[a[n-i] g[i], {i, 1, n}]]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} A257673(n,k).
a(n) ~ c * d^n, where d = 3.2975132503126723336836261261699651439543806296893328114462016186843..., c = 0.3713883419445088444000361183895708557141471246022776707501762842135... . - Vaclav Kotesovec, May 19 2015
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^k)^k). - Ilya Gutkovskiy, Oct 18 2018