cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257689 Numbers that are either ludic or prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 115, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 161, 163, 167, 173, 175, 179, 181, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 235, 239, 241, 247, 251, 257, 263, 265
Offset: 1

Views

Author

Antti Karttunen, May 07 2015

Keywords

Crossrefs

Union of primes (A000040) and ludic numbers (A003309).
Cf. A192506 (complement, neither ludic nor prime), A192503 (ludic and prime), A192504 (ludic and nonprime), A192505 (nonludic and prime).
Differs from A206074(n-1), A186891(n) and A257688(n) for the first time at n=19, where a(19) = 59, while A206074(18) = A186891(19) = A257688(19) = 55, a term missing from here.
Differs from A257691 for the first time at n=24, where a(24) = 77, while A257691(24) = 79.

Programs

  • Mathematica
    a3309[nmax_] := a3309[nmax] = Module[{t = Range[2, nmax], k, r = {1}}, While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]]; r];
    ludicQ[n_, nmax_] /; 1 <= n <= nmax := MemberQ[a3309[nmax], n];
    terms = 1000;
    f[nmax_] := f[nmax] = Select[Range[nmax], ludicQ[#, nmax] || PrimeQ[#]&] // PadRight[#, terms]&;
    f[nmax = terms];
    f[nmax = 2 nmax];
    While[f[nmax] != f[nmax/2], nmax = 2 nmax];
    seq = f[nmax] (* Jean-François Alcover, Dec 10 2021, after Ray Chandler in A003309 *)