cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257760 Zeroless numbers n such that the products of the decimal digits of n and n^2 coincide.

Original entry on oeis.org

1, 1488, 3381, 14889, 18489, 181965, 262989, 338646, 358489, 367589, 437189, 438329, 479285, 781839, 964941, 1456589, 1763954, 2579285, 2868489, 3365285, 3419389, 3451988, 3584889, 3625619, 4378829, 4653989, 6868877, 7295986, 9548479, 14529839, 14534488
Offset: 1

Views

Author

Pieter Post, May 07 2015

Keywords

Comments

It is unknown if this sequence is infinite.
Number of terms < 10^n: 1, 1, 1, 3, 5, 15, 29, 75, 211, 583, 1694, ..., . - Robert G. Wilson v, May 25 2015
Also nontrivial numbers n such that the products of the decimal digits of n and n^2 are equal. Trivial solutions are any number which contains a zero in its decimal expansion. - Robert G. Wilson v, May 11 2015

Examples

			1488 is in the sequence since 1488^2 = 2214144 and we have 256 = 1*4*8*8 = 2*2*1*4*1*4*4.
3381 is in the sequence because 3381^2 = 11431161 and 72 = 3*3*8*1 = 1*1*4*3*1*1*6*1.
		

Crossrefs

Subsequence of A052040.

Programs

  • Mathematica
    fQ[n_] := Times @@ IntegerDigits[n] == Times @@ IntegerDigits[n^2] > 0; Select[ Range@ 10000000, fQ] (* Robert G. Wilson v, May 07 2015 *)
  • PARI
    isok(n) = (d = digits(n)) && vecmin(d) && (dd = digits(n^2)) && (prod(k=1, #d, d[k]) == prod(k=1, #dd, dd[k])); \\ Michel Marcus, May 07 2015