A257786 Numbers n such that the square root of the sum of the digits times the sum of the digits of n in some power equal n.
0, 1, 27, 376, 13131, 234595324075, 54377519037479592374299, 8326623359858152426050700, 1513868951125582592290131113769528
Offset: 1
Examples
376 = sqrt(3+7+6)*(3^2+7^2+6^2). 13131 = sqrt(1+3+1+3+1)*(1^7+3^7+1^7+3^7+1^7).
Programs
-
Python
def moda(n,a): kk = 0 while n > 0: kk= kk+(n%10)**a n =int(n//10) return kk def sod(n): kk = 0 while n > 0: k= kk+(n%10) n =int(n//10) return kk for a in range (1, 10): for c in range (1, 10**8): if c**2==sod(c)*moda(c,a)**2: print (a,c, sod(c),moda(c,a))
Extensions
a(6) from Giovanni Resta, May 09 2015
a(7)-a(9) from Chai Wah Wu, Nov 29 2015
Comments