A257787 Numbers n such that the sum of the digits of n to some power divided by the sum of the digits equal n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 48, 415, 231591, 3829377463694454, 56407086228259246207394322684
Offset: 1
Examples
37 = (3^3+7^3)/(3+7). 231591 = (2^7+3^7+1^7+5^7+9^7+1^7)/(2+3+1+5+9+1).
Programs
-
Python
def moda(n,a): kk = 0 while n > 0: kk= kk+(n%10)**a n =int(n//10) return kk def sod(n): kk = 0 while n > 0: kk= kk+(n%10) n =int(n//10) return kk for a in range (1, 10): for c in range (1, 10**6): if c*sod(c)==moda(c, a): print (a,c, moda(c,a),sod(c))
Extensions
a(14) from Giovanni Resta, May 09 2015
a(15) from Chai Wah Wu, Nov 30 2015
Comments