A257789 Numbers n such that 2n*prime(n) - 1 and 2n*prime(n) + 1 are both prime.
1, 2, 3, 24, 30, 33, 54, 90, 156, 168, 189, 225, 294, 300, 402, 576, 741, 780, 825, 849, 918, 948, 978, 1014, 1245, 1542, 1551, 1608, 1614, 1617, 1770, 1773, 1908, 1914, 1920, 1947, 2025, 2286, 2361, 2370, 2598, 2760, 2865, 2970, 3081, 3516, 3744, 3759, 3948, 4023
Offset: 1
Examples
2 is in this sequence because 2*2*prime(2) - 1 = 11 and 2*2*prime(2) + 1 = 13 are both prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A085637.
Programs
-
Magma
[n: n in [1..4500] | IsPrime(2*n*NthPrime(n)-1) and IsPrime(2*n*NthPrime(n)+1)];
-
Maple
filter:= proc(n) local p; p:= ithprime(n); isprime(2*n*p+1) and isprime(2*n*p-1) end proc: select(filter, [1,2,seq(3*j,j=1..10^5)]); # Robert Israel, May 08 2015
-
Mathematica
Select[Range[3000], PrimeQ[2 # Prime[#] - 1] && PrimeQ[2 # Prime[#] + 1] &] (* Vincenzo Librandi, May 09 2015 *) Select[Range[4200],AllTrue[2# Prime[#]+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 08 2018 *)
-
PARI
v=List(); n=0; forprime(p=2,1e5, n++; if(isprime(2*n*p-1) && isprime(2*n*p+1), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, May 08 2015
Comments