A257812 Decimal expansion of Sum_{n>=2} (-1)^n/(n*log(n)).
5, 2, 6, 4, 1, 2, 2, 4, 6, 5, 3, 3, 3, 1, 0, 4, 1, 0, 9, 3, 0, 6, 9, 6, 5, 0, 1, 4, 1, 1, 1, 3, 1, 4, 1, 3, 7, 2, 1, 7, 9, 0, 5, 9, 7, 8, 8, 7, 5, 5, 8, 5, 4, 0, 7, 4, 6, 9, 9, 5, 7, 0, 0, 8, 3, 3, 7, 8, 3, 2, 2, 3, 1, 3, 0, 2, 0, 8, 4, 4, 6, 9, 8, 4, 6, 3, 6, 2, 2, 7, 2, 9, 7, 3, 4, 6, 1, 5, 1, 7, 8, 8, 7, 6, 4, 9, 5, 5, 8
Offset: 0
Examples
0.5264122465333104109306965014111314137217905978875585...
Links
- Iaroslav V. Blagouchine, Table of n, a(n) for n = 0..1000
Programs
-
Maple
evalf(sum((-1)^n/(n*log(n)), n=2..infinity), 120); evalf(1/(4*log(2))+2*(Int((2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)), x=0..infinity)), 120);
-
Mathematica
NSum[(-1)^n/(n*Log[n]), {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> AlternatingSigns] 1/(4*Log[2])+2*NIntegrate[(2*ArcTan[x]+x*Log[4+4*x^2])/((x^2+1)*Sinh[2*Pi*x]*(Log[4+4*x^2]^2+4*ArcTan[x]^2)), {x, 0,Infinity}, WorkingPrecision->120]
-
PARI
default(realprecision,120); sumalt(n=2, (-1)^n/(n*log(n))) \\ Vaclav Kotesovec, May 10 2015
-
PARI
allocatemem(50000000); default(realprecision, 1200); 1/(4*log(2))+2*intnum(x=0, 1000, (2*atan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*atan(x)^2)*(x^2+1)))
Formula
Equals 1/(4*log(2)) + 2*Integral_{x=0..oo} (2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)) dx.
Comments