cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257812 Decimal expansion of Sum_{n>=2} (-1)^n/(n*log(n)).

Original entry on oeis.org

5, 2, 6, 4, 1, 2, 2, 4, 6, 5, 3, 3, 3, 1, 0, 4, 1, 0, 9, 3, 0, 6, 9, 6, 5, 0, 1, 4, 1, 1, 1, 3, 1, 4, 1, 3, 7, 2, 1, 7, 9, 0, 5, 9, 7, 8, 8, 7, 5, 5, 8, 5, 4, 0, 7, 4, 6, 9, 9, 5, 7, 0, 0, 8, 3, 3, 7, 8, 3, 2, 2, 3, 1, 3, 0, 2, 0, 8, 4, 4, 6, 9, 8, 4, 6, 3, 6, 2, 2, 7, 2, 9, 7, 3, 4, 6, 1, 5, 1, 7, 8, 8, 7, 6, 4, 9, 5, 5, 8
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges quite slowly. However, it can be efficiently computed via its integral representation (see formula below), which converges exponentially quickly. This formula and PARI were used to compute 1000 digits.

Examples

			0.5264122465333104109306965014111314137217905978875585...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^n/(n*log(n)), n=2..infinity), 120);
    evalf(1/(4*log(2))+2*(Int((2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)), x=0..infinity)), 120);
  • Mathematica
    NSum[(-1)^n/(n*Log[n]), {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> AlternatingSigns]
    1/(4*Log[2])+2*NIntegrate[(2*ArcTan[x]+x*Log[4+4*x^2])/((x^2+1)*Sinh[2*Pi*x]*(Log[4+4*x^2]^2+4*ArcTan[x]^2)), {x, 0,Infinity}, WorkingPrecision->120]
  • PARI
    default(realprecision,120); sumalt(n=2, (-1)^n/(n*log(n))) \\ Vaclav Kotesovec, May 10 2015
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/(4*log(2))+2*intnum(x=0, 1000, (2*atan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*atan(x)^2)*(x^2+1)))

Formula

Equals 1/(4*log(2)) + 2*Integral_{x=0..oo} (2*arctan(x)+x*log(4+4*x^2))/(sinh(2*Pi*x)*(log(4+4*x^2)^2+4*arctan(x)^2)*(x^2+1)) dx.