A257823 Positive integers whose square is the sum of 59 consecutive squares.
413, 531, 8673, 11269, 426511, 554187, 9192849, 11944727, 452101247, 587437689, 9744411267, 12661399351, 479226895309, 622683396153, 10329066750171, 13421071367333, 507980056926293, 660043812484491, 10948801010769993, 14226322987973629, 538458381114975271
Offset: 1
Examples
413 is in the sequence because 413^2 = 170569 = 22^2+23^2+...+80^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1060,0,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[413,531,8673,11269,426511,554187,9192849, 11944727]; [n le 8 select I[n] else 1060*Self(n-4)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
LinearRecurrence[{0, 0, 0, 1060, 0, 0, 0, -1}, {413, 531, 8673, 11269, 426511, 554187, 9192849, 11944727}, 30] (* Vincenzo Librandi, May 11 2015 *)
-
PARI
Vec(-59*x*(x-1)*(7*x^6+16*x^5+163*x^4+354*x^3+163*x^2+16*x+7) / (x^8-1060*x^4+1) + O(x^100))
Formula
a(n) = 1060*a(n-4)-a(n-8).
G.f.: -59*x*(x-1)*(7*x^6+16*x^5+163*x^4+354*x^3+163*x^2+16*x+7) / (x^8-1060*x^4+1).
Comments