A257825 Positive integers whose square is the sum of 74 consecutive squares.
2257, 2849, 21941, 27713, 604765, 763865, 16669573, 21054961, 162316669, 205018517, 4474051285, 5651073085, 123321498797, 155764598629, 1200818695321, 1516726961053, 33099030801665, 41806637918965, 912332431430633, 1152346479602381, 8883656545668089
Offset: 1
Examples
2257 is in the sequence because 2257^2 = 5094049 = 225^2+226^2+...+298^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,7398,0,0,0,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[2257,2849,21941,27713,604765,763865,16669573, 21054961,162316669,205018517,4474051285,5651073085]; [n le 12 select I[n] else 7398*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 7398, 0, 0, 0, 0, 0, -1}, {2257, 2849, 21941, 27713, 604765, 763865, 16669573, 21054961, 162316669, 205018517, 4474051285, 5651073085}, 40] (* Vincenzo Librandi, May 11 2015 *)
-
PARI
Vec(-37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)) + O(x^100))
Formula
a(n) = 7398*a(n-6)-a(n-12).
G.f.: -37*x*(5*x^11+5*x^10+61*x^9+77*x^8+593*x^7+749*x^6-20645*x^5-16345*x^4-749*x^3-593*x^2-77*x-61) / ((x^6-86*x^3-1)*(x^6+86*x^3-1)).
Comments