A257836 Numbers which are the product of at least two consecutive odd numbers > 1.
15, 35, 63, 99, 105, 143, 195, 255, 315, 323, 399, 483, 575, 675, 693, 783, 899, 945, 1023, 1155, 1287, 1295, 1443, 1599, 1763, 1935, 2115, 2145, 2303, 2499, 2703, 2915, 3135, 3315, 3363, 3465, 3599, 3843, 4095, 4355, 4623, 4845, 4899, 5183, 5475, 5775, 6083
Offset: 1
Keywords
Examples
. | | ----- Factorizations into ... -------------- . n | a(n) | prime powers | consecutive odd numbers . ----+-------+--------------------+-------------------------- . 1 | 15 | 3 * 5 | 3 * 5 . 2 | 35 | 5 * 7 | 5 * 7 . 3 | 63 | 3^2 * 7 | 7 * 9 . 4 | 99 | 3^2 * 11 | 9 * 11 . 5 | 105 | 3 * 5 * 7 | 3 * 5 * 7 . 6 | 143 | 11 * 13 | 11 * 13 . 7 | 195 | 3 * 5 * 13 | 13 * 15 . 8 | 255 | 3 * 5 * 17 | 15 * 17 . 9 | 315 | 3^2 * 5 * 7 | 5 * 7 * 9 . 10 | 323 | 17 * 19 | 17 * 19 . 11 | 399 | 3 * 7 * 19 | 19 * 21 . 12 | 483 | 3 * 7 * 23 | 21 * 23 . 13 | 575 | 5^2 * 23 | 23 * 25 . 14 | 675 | 3^3 * 5^2 | 25 * 27 . 15 | 693 | 3^2 * 7 * 11 | 7 * 9 * 11 . 16 | 783 | 3^3 * 29 | 27 * 29 . 17 | 899 | 29 * 31 | 29 * 31 . 18 | 945 | 3^3 * 5 * 7 | 3 * 5 * 7 * 9 . 19 | 1023 | 3 * 11 * 31 | 31 * 33 . 20 | 1155 | 3 * 5 * 7 * 11 | 33 * 35 . 21 | 1287 | 3^2 * 11 * 13 | 9 * 11 * 13 . 22 | 1295 | 5 * 7 * 37 | 35 * 37 . 23 | 1443 | 3 * 13 * 37 | 37 * 39 . 24 | 1599 | 3 * 13 * 41 | 39 * 41 . 25 | 1763 | 41 * 43 | 41 * 43 . 26 | 1935 | 3^2 * 5 * 43 | 43 * 45 . 27 | 2115 | 3^2 * 5 * 47 | 45 * 47 . 28 | 2145 | 3 * 5 * 11 * 13 | 11 * 13 * 15 . 29 | 2303 | 7^2 * 47 | 47 * 49 . 30 | 2499 | 3 * 7^2 * 17 | 49 * 51 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a257836 n = a257836_list !! (n-1) a257836_list = f $ singleton (15, 3, 5) where f s = y : f (insert (w, u, v') $ insert (w `div` u, u + 2, v') s') where w = y * v'; v' = v + 2 ((y, u, v), s') = deleteFindMin s