A257844 a(n) = floor(n/4) * (n mod 4).
0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 4, 6, 0, 3, 6, 9, 0, 4, 8, 12, 0, 5, 10, 15, 0, 6, 12, 18, 0, 7, 14, 21, 0, 8, 16, 24, 0, 9, 18, 27, 0, 10, 20, 30, 0, 11, 22, 33, 0, 12, 24, 36, 0, 13, 26, 39, 0, 14, 28, 42, 0, 15, 30, 45, 0, 16, 32, 48, 0, 17, 34, 51, 0, 18, 36
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Programs
-
Magma
[Floor(n/4)*(n mod 4) : n in [0..100]]; // Wesley Ivan Hurt, Jun 22 2015
-
Magma
I:=[0,0,0,0,0,1,2,3]; [n le 8 select I[n] else 2*Self(n-4)-Self(n-8): n in [1..100]]; // Vincenzo Librandi, Jun 23 2015
-
Maple
A257844:=n->floor(n/4)*(n mod 4): seq(A257844(n), n=0..100); # Wesley Ivan Hurt, Jun 22 2015
-
Mathematica
Table[Floor[n/4] Mod[n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 22 2015 *)
-
PARI
a(n,b=4)=(n=divrem(n,b))[1]*n[2]
-
PARI
concat([0,0,0,0,0], Vec(x^5*(3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ Colin Barker, May 11 2015
-
Python
def A257844(n): return (n>>2)*(n&3) # Chai Wah Wu, Jan 27 2023
Formula
a(n) = 2*a(n-4) - a(n-8), n > 8. - Colin Barker, May 11 2015
G.f.: x^5*(3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, May 11 2015
a(n) = (3 - 2*(-1)^((2*n - 1 + (-1)^n)/4) - (-1)^n)*(2*n - 3 + 2*(-1)^((2*n - 1 + (-1)^n)/4) + (-1)^n)/16. - Wesley Ivan Hurt, Jun 22 2015
Comments