A257852 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (2^n*(6*k - 3 - 2*(-1)^n) - 1)/3, n,k >= 1.
3, 1, 7, 13, 9, 11, 5, 29, 17, 15, 53, 37, 45, 25, 19, 21, 117, 69, 61, 33, 23, 213, 149, 181, 101, 77, 41, 27, 85, 469, 277, 245, 133, 93, 49, 31, 853, 597, 725, 405, 309, 165, 109, 57, 35, 341, 1877, 1109, 981, 533, 373, 197, 125, 65, 39
Offset: 1
Examples
From _Ruud H.G. van Tol_, Oct 17 2023, corrected and extended by _Antti Karttunen_, Apr 18 2024: (Start) Array A begins: n\k| 1| 2| 3| 4| 5| 6| 7| 8| ... ---+--------------------------------------------- 1 | 3, 7, 11, 15, 19, 23, 27, 31, ... 2 | 1, 9, 17, 25, 33, 41, 49, 57, ... 3 | 13, 29, 45, 61, 77, 93, 109, 125, ... 4 | 5, 37, 69, 101, 133, 165, 197, 229, ... 5 | 53, 117, 181, 245, 309, 373, 437, 501, ... 6 | 21, 149, 277, 405, 533, 661, 789, 917, ... ... (End)
Links
Crossrefs
Programs
-
Mathematica
(* Array: *) Grid[Table[(2^n*(6*k - 3 - 2*(-1)^n) - 1)/3, {n, 10}, {k, 10}]] (* Array antidiagonals flattened: *) Flatten[Table[(2^(n - k + 1)*(6*k - 3 - 2*(-1)^(n - k + 1)) - 1)/ 3, {n, 10}, {k, n}]]
-
PARI
up_to = 105; A257852sq(n,k) = ((2^n * (6*k - 3 - 2*(-1)^n) - 1)/3); A257852list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A257852sq((a-(col-1)),col))); (v); }; v257852 = A257852list(up_to); A257852(n) = v257852[n]; \\ Antti Karttunen, Apr 18 2024
Formula
From Ruud H.G. van Tol, Oct 17 2023: (Start)
A(n,k+1) = A(n,k) + 2^(n+1).
A(n+2,k) = A(n,k)*4 + 1.
A(1,k) = A004767(k-1).
A(2,k) = A017077(k-1).
A(3,k) = A082285(k-1).
A(4,k) = A238477(k). (End)
Comments