cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A017077 a(n) = 8*n + 1.

Original entry on oeis.org

1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433
Offset: 0

Views

Author

Keywords

Comments

Cf. A007519 (primes), subsequence of A047522.
a(n-1), n >= 1, gives the first column of the triangle A238475 related to the Collatz problem. - Wolfdieter Lang, Mar 12 2014
First differences of A054552. - Wesley Ivan Hurt, Jul 08 2014
An odd number is congruent to a perfect square modulo every power of 2 iff it is in this sequence. Sketch of proof: Suppose the modulus is 2^k with k at least three and note that the only odd quadratic residue (mod 8) is 1. By application of difference of squares and the fact that gcd(x-y,x+y)=2 we can show that for odd x,y, we have x^2 and y^2 congruent mod 2^k iff x is congruent to one of y, 2^(k-1)-y, 2^(k-1)+y, 2^k-y. Now when we "lift" to (mod 2^(k+1)) we see that the degeneracy between a^2 and (2^(k-1)-a)^2 "breaks" to give a^2 and a^2-2^ka+2^(2k-2). Since a is odd, the latter is congruent to a^2+2^k (mod 2^(k+1)). Hence we can form every binary number that ends with '001' by starting modulo 8 and "lifting" while adding digits as necessary. But this sequence is exactly the set of binary numbers ending in '001', so our claim is proved. - Rafay A. Ashary, Oct 23 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-antiprism graph. - Eric W. Weisstein, Nov 29 2017
Bisection of A016813. - L. Edson Jeffery, Apr 26 2022

Examples

			Illustration of initial terms:
.                                          o       o       o
.                          o     o     o     o     o     o
.              o   o   o     o   o   o         o   o   o
.      o o o     o o o         o o o             o o o
.  o   o o o   o o o o o   o o o o o o o   o o o o o o o o o
.      o o o     o o o         o o o             o o o
.              o   o   o     o   o   o         o   o   o
.                          o     o     o     o     o     o
.                                          o       o       o
--------------------------------------------------------------
.  1       9          17              25                  33
- _Bruno Berselli_, Feb 28 2014
		

Crossrefs

Cf. A002189 (subsequence), A004768, A007519, A010731 (first differences), A016813, A047522, A054552.
Column 1 of A093565. Column 5 of triangle A130154. Second leftmost column of triangle A281334.
Row 1 of the arrays A081582, A238475, A371095, and A371096.
Row 2 of A257852.
Apart from the initial term, row sums of triangle A278480.

Programs

Formula

G.f.: (1+7*x)/(1-x)^2.
a(n+1) = A004768(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Mar 14 2014
E.g.f.: exp(x)*(1 + 8*x). - Stefano Spezia, May 13 2021
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = a(n-1) + 8 with a(0)=1.
a(n) = A016813(2*n). (End)

A372282 Array read by upward antidiagonals: A(n, k) = A371094(A(n-1, k)) for n > 1, k >= 1; A(1, k) = 2*k-1.

Original entry on oeis.org

1, 21, 3, 5461, 21, 5, 357913941, 5461, 341, 7, 1537228672809129301, 357913941, 1398101, 45, 9, 28356863910078205288614550619314017621, 1537228672809129301, 23456248059221, 1109, 117, 11, 9649340769776349618630915417390658987772498722136713669954798667326094136661, 28356863910078205288614550619314017621, 6602346876188694799461995861, 873813, 11605, 69, 13
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Examples

			Array begins:
n\k|    1     2        3     4      5     6        7     8      9     10
---+----------------------------------------------------------------------
1  |    1,    3,       5,    7,     9,   11,      13,   15,    17,    19,
2  |   21,   21,     341,   45,   117,   69,     341,   93,   213,   117,
3  | 5461, 5461, 1398101, 1109, 11605, 3413, 1398101, 2261, 87381, 11605,
		

Crossrefs

Cf. A005408 (row 1), A372351 (row 2, bisection of A371094), A372444 (column 14).
Arrays derived from this one:
A372285 the number of terms of A086893 in the interval [A(n, k), A(1+n, k)],
A372287 the column index of A(n, k) in array A257852,
A372288 the sum of digits of A(n, k) in "Jacobsthal greedy base",
A372353 differences between A(n,k) and the largest term of A086893 <= A(n,k),
A372354 floor(log_2(.)) of terms, A372356 (and their columnwise first differences),
A372359 terms xored with binary words of the same length, either of the form 10101...0101 or 110101...0101, depending on whether the binary length is odd or even.
Cf. also arrays A371096, A371102 that give subsets of columns of this array, and array A371100 that gives the terms of the row 2 in different order.

Programs

  • PARI
    up_to = 28;
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k)));
    A372282list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372282sq((a-(col-1)),col))); (v); };
    v372282 = A372282list(up_to);
    A372282(n) = v372282[n];

A096773 a(n) = 4*a(n-2) + 1 with a(1) = 0, a(2) = 3.

Original entry on oeis.org

0, 3, 1, 13, 5, 53, 21, 213, 85, 853, 341, 3413, 1365, 13653, 5461, 54613, 21845, 218453, 87381, 873813, 349525, 3495253, 1398101, 13981013, 5592405, 55924053, 22369621, 223696213, 89478485, 894784853, 357913941, 3579139413, 1431655765
Offset: 1

Views

Author

Gottfried Helms, Aug 15 2004

Keywords

Comments

Remainders for classes m of integers n (mod 2^(m+1)). After applying one Collatz (3x+1)-transformation to the so-classified integers the result can be written in two classes (mod 6) only.
This classifying scheme covers all positive integers.
With one 3x+1-transformation T(x;p) := x' = (3x+1)/2^p, all numbers x, described in the form, with the free parameter i >= 0, x = i*2^N + a(N) result in x', describable by the two classes with the same parameter i:
x' = i*6 + 1 (for odd N>2), or x' = i*6 + 5 (for even N). Thus
x = 4*i + 3 -> x' = 6*i + 5, x = 8*i + 1 -> x' = 6*i + 1,
x = 16*i + 13 -> x' = 6*i + 5, x = 32*i + 5 -> x' = 6*i + 1,
x = 64*i + 53 -> x' = 6*i + 5, x = 128*i + 21 -> x' = 6*i + 1,
....
all with "i" as a free parameter >= 0 covering all positive integers.

Examples

			a(1) = (2^0-1)/3 =  0, a(2) = (5*2^1 - 1) / 3 =  3,
a(3) = (2^2-1)/3 =  1, a(4) = (5*2^3 - 1) / 3 = 13,
a(5) = (2^4-1)/3 =  5, a(6) = (5*2^5 - 1) / 3 = 53,
a(7) = (2^6-1)/3 = 21.
....
		

Crossrefs

Bisections are A002450 & A072197.
After the initial 0, column 1 of A257852.
Cf. A176965.

Programs

  • Magma
    [(2^(n-1)*(3 + 2*(-1)^n) - 1)/3: n in [1..40]]; // Vincenzo Librandi, Jul 12 2015
    
  • Mathematica
    a[1] = 0; a[2] = 3; a[n_] := a[n] = 4a[n - 2] + 1; Table[ a[n], {n, 35}] (* Robert G. Wilson v, Aug 20 2004 *)
    Table[(2^(n - 1)*(3 + 2*(-1)^(n)) - 1)/3, {n, 10}] (* L. Edson Jeffery, Jul 12 2015 *)
    nxt[{a_,b_}]:={b,4a+1}; NestList[nxt,{0,3},40][[;;,1]] (* or *) LinearRecurrence[{1,4,-4},{0,3,1},40] (* Harvey P. Dale, Mar 19 2025 *)
  • PARI
    apply( {A096773(n) = if(n%2, 1, 5)<<(n-1)\3}, [1..55]) \\ M. F. Hasler, May 28 2024
    
  • Perl
    # To map any (odd) v to its (r,c):
    use bigint; $v=149; $r=$c=0; while(1){ $b=($v&1); $v>>=1; if ($b==($v&1)){ $c=($v>>1); last} $r++} $r&=1; # this splits the binary representation into two parts, at the first repeated digit from the right: the number of bits on the right is the row value, and the binary value on the left is the column value. Example: 149 => 1.00.10101 => (r,c)=(5,1). Ruud H.G. van Tol, Sep 23 2021
    
  • Python
    A096773=lambda n:((1 if n&1 else 5)<M. F. Hasler, May 28 2024

Formula

a(2m) = (5*2^(2m-1) - 1)/3, a(2m-1) = (2^(2m-2)-1)/3.
From Paul Curtz, Jul 01 2008; corrected by Bob Selcoe, Jul 28 2018: (Start)
a(2n) = 10*a(2n-1) + 3.
a(n+1) - 2*a(n) = A001045(n+2), signed. (End)
a(n) = (2^(n-1)*(3 + 2*(-1)^n) - 1)/3. - L. Edson Jeffery, Jul 12 2015
a(2n) = A086893(2n), a(2n+1) = A086893(2n-1), n > 0. - Yosu Yurramendi, Jan 17 2017
G.f.: -x^2*(-3+2*x) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Mar 07 2017
a(2n) = A072197(n-1), n > 0; a(2n+1) = A002450(n), n >= 0. - Yosu Yurramendi, Mar 07 2017
a(2n) = (A266753(n) + A004171(n-1))/2, a(2n+1) = (A266753(n) - A004171(n-1))/2, n > 0. - Yosu Yurramendi, Mar 07 2017
a(n) = least residue 2*3^(2^(n-4)-1) - 1 (mod 2^n), n >= 5. - Bob Selcoe, Jul 26 2018
a(n) = 2*A176965(n-1) + 1 for n > 1. - Loren M. Pearson, Dec 06 2024

A372443 The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.

Original entry on oeis.org

27, 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Column 14 of A372283, Row 13 of A256598 (but only up to the first 1).
Row 1 of A372560.
From term 47 to the first 1 same as A088593.
Sequences derived from this one or related to:
A372445 column index of a(n) in array A257852,
A372362 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372447 binary lengths minus 1,
A372446 a(n) xored with the term of A086893 having the same binary length,
A372453 a(n) minus the term of A086893 having the same binary length.

Programs

  • PARI
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372443(n) = { my(x=27); while(n, x=R(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = R(a(n-1)), where R(n) = (3*n+1)/2^A371093(n) = A000265(3*n+1).
For n > 0, a(n) = R(A372444(n-1)) = A000265(1+3*A372444(n-1)).

A047529 Numbers that are congruent to {1, 3, 7} mod 8.

Original entry on oeis.org

1, 3, 7, 9, 11, 15, 17, 19, 23, 25, 27, 31, 33, 35, 39, 41, 43, 47, 49, 51, 55, 57, 59, 63, 65, 67, 71, 73, 75, 79, 81, 83, 87, 89, 91, 95, 97, 99, 103, 105, 107, 111, 113, 115, 119, 121, 123, 127, 129, 131, 135, 137, 139, 143, 145, 147, 151, 153, 155, 159
Offset: 1

Views

Author

Keywords

Comments

Terms that occur on the first two rows of array A257852. Odd numbers that are not of the form 4k+1, where k is an odd number. - Antti Karttunen, Jun 06 2024

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 15*x^6 + 17*x^7 + 19*x^8 + 23*x^9 + ...
		

Crossrefs

Setwise difference A005408 \ A004770.
Disjoint union of A004767 and A017077; see A257852.

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 3, 7]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    A047529:=n->(24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9: seq(A047529(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[150], MemberQ[{1,3,7}, Mod[#,8]]&] (* Harvey P. Dale, May 02 2011 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
  • PARI
    Vec(x*(x^3+4*x^2+2*x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 12 2015
    
  • PARI
    {a(n) = n\3 * 8 + [-1, 1, 3][n%3 + 1]}; /* Michael Somos, Nov 15 2015 */
    

Formula

a(n) = (24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9. - Fred Daniel Kline, Nov 12 2015
From Colin Barker, Nov 12 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x*(x^3+4*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)). (End)
a(n+3) = a(n) + 8 for all n in Z. - Michael Somos, Nov 15 2015
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-7. - Wesley Ivan Hurt, Jun 13 2016
a(n) = 8 * floor((n-1) / 3) + 2^(((n-1) mod 3) + 1) - 1. - Fred Daniel Kline, Aug 09 2016
a(n) = 2*(n + floor(n/3)) - 1. - Wolfdieter Lang, Sep 10 2021

A371100 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3, n,k >= 1.

Original entry on oeis.org

21, 21, 45, 341, 117, 69, 341, 725, 213, 93, 5461, 1877, 1109, 309, 117, 5461, 11605, 3413, 1493, 405, 141, 87381, 30037, 17749, 4949, 1877, 501, 165, 87381, 185685, 54613, 23893, 6485, 2261, 597, 189, 1398101, 480597, 283989, 79189, 30037, 8021, 2645, 693, 213, 1398101, 2970965, 873813, 382293, 103765, 36181, 9557, 3029, 789, 237
Offset: 1

Views

Author

Antti Karttunen and Ali Sada, Apr 18 2024

Keywords

Examples

			The top left corner of the array:
n\k|      1       2       3        4        5        6        7        8
---+--------------------------------------------------------------------------
1  |     21,     45,     69,      93,     117,     141,     165,     189, ...
2  |     21,    117,    213,     309,     405,     501,     597,     693, ...
3  |    341,    725,   1109,    1493,    1877,    2261,    2645,    3029, ...
4  |    341,   1877,   3413,    4949,    6485,    8021,    9557,   11093, ...
5  |   5461,  11605,  17749,   23893,   30037,   36181,   42325,   48469, ...
6  |   5461,  30037,  54613,   79189,  103765,  128341,  152917,  177493, ...
7  |  87381, 185685, 283989,  382293,  480597,  578901,  677205,  775509, ...
8  |  87381, 480597, 873813, 1267029, 1660245, 2053461, 2446677, 2839893, ...
...
		

Crossrefs

Cf. A372351 (same terms, in different order), A372290 (sorted into ascending order, without duplicates), A372293 (odd numbers that do not occur here).
Leftmost column is A144864 duplicated, without its initial 1.
Row 1: A102603.

Programs

  • Mathematica
    A371100[n_, k_] := 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    Table[A371100[n - k + 1, k], {n, 10}, {k, n}] (* Paolo Xausa, Apr 21 2024 *)
  • PARI
    up_to = 55;
    A371100sq(n,k) = 4^n*(6*k - 3 - 2*(-1)^n) + (4^n - 1)/3;
    A371100list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371100sq((a-(col-1)),col))); (v); };
    v371100 = A371100list(up_to);
    A371100(n) = v371100[n];

Formula

A(n, k) = A007283(n)*A257852(n,k) + A079319(n).
A(n, k) = A371094(A257852(n,k)).
A(n+2, k) = 5 + 16*A(n,k).

A371093 a(n) is the 2-adic valuation of 3n+1.

Original entry on oeis.org

0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 19 2024

Keywords

Comments

When a(n) is applied to square array A257852 we obtain square array A004736, or in other words, a(n) applied to any odd number gives the index of the row where it is located in array A257852.
See further comments in A087230.
The asymptotic density of the occurrences of k = 0, 1, 2, ... is 1/2^(k+1). The asymptotic mean of this sequence is 1. - Amiram Eldar, May 28 2024

Crossrefs

Bisections: A000004, A087230.
Cf. also A371092.

Programs

  • Mathematica
    Table[IntegerExponent[3*n+1, 2], {n, 0, 105}] (* James C. McMahon, Apr 21 2024 *)
  • PARI
    A371093(n) = valuation(1+3*n,2);
    
  • Python
    def A371093(n): return ((m:=3*n) & ~(m+1)).bit_length() # Chai Wah Wu, Apr 20 2024

Formula

a(n) = A007814(A016777(n)).
For all n >= 0, A067745(1+n) = A016777(n) / 2^a(n).
G.f.: Sum_{k>=1} k*x^(-1/3 + (-2)^(k + 1)/3 + 2^k)/(1 - x^(2^(k + 1))). - Miles Wilson, Sep 30 2024

A372283 Array read by upward antidiagonals: A(n, k) = R(A(n-1, k)) for n > 1, k >= 1; A(1, k) = 2*k-1, where Reduced Collatz function R(n) gives the odd part of 3n+1.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 1, 1, 7, 1, 1, 1, 11, 9, 1, 1, 1, 17, 7, 11, 1, 1, 1, 13, 11, 17, 13, 1, 1, 1, 5, 17, 13, 5, 15, 1, 1, 1, 1, 13, 5, 1, 23, 17, 1, 1, 1, 1, 5, 1, 1, 35, 13, 19, 1, 1, 1, 1, 1, 1, 1, 53, 5, 29, 21, 1, 1, 1, 1, 1, 1, 1, 5, 1, 11, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 35, 25
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Comments

Collatz conjecture is equal to the claim that in each column 1 will eventually appear. See also arrays A372287 and A372288.

Examples

			Array begins:
n\k| 1  2  3   4   5   6   7   8   9  10  11  12  13   14  15   16  17  18
---+-----------------------------------------------------------------------
1  | 1, 3, 5,  7,  9, 11, 13, 15, 17, 19, 21, 23, 25,  27, 29,  31, 33, 35,
2  | 1, 5, 1, 11,  7, 17,  5, 23, 13, 29,  1, 35, 19,  41, 11,  47, 25, 53,
3  | 1, 1, 1, 17, 11, 13,  1, 35,  5, 11,  1, 53, 29,  31, 17,  71, 19,  5,
4  | 1, 1, 1, 13, 17,  5,  1, 53,  1, 17,  1,  5, 11,  47, 13, 107, 29,  1,
5  | 1, 1, 1,  5, 13,  1,  1,  5,  1, 13,  1,  1, 17,  71,  5, 161, 11,  1,
6  | 1, 1, 1,  1,  5,  1,  1,  1,  1,  5,  1,  1, 13, 107,  1, 121, 17,  1,
7  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  5, 161,  1,  91, 13,  1,
8  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 121,  1, 137,  5,  1,
9  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  91,  1, 103,  1,  1,
10 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 137,  1, 155,  1,  1,
11 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 103,  1, 233,  1,  1,
12 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 155,  1, 175,  1,  1,
13 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 233,  1, 263,  1,  1,
14 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 175,  1, 395,  1,  1,
15 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 263,  1, 593,  1,  1,
16 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 395,  1, 445,  1,  1,
		

Crossrefs

Cf. A005408 (row 1), A075677 (row 2), A372443 (column 14).
Arrays derived from this one or related to:
A372287 the column index of A(n, k) in array A257852,
A372361 terms xored with binary words of the same length, either of the form 10101...0101 or 110101...0101, depending on whether the binary length is odd or even,
A372360 binary weights of A372361.
Cf. also array A371095 (giving every fourth column, 1, 5, 9, ...) and irregular array A256598 which gives the terms of each column, but only down to the first 1.

Programs

  • Mathematica
    With[{dmax = 15}, Table[#[[k, n-k+1]], {n, dmax}, {k, n}] & [Array[NestList[(3*# + 1)/2^IntegerExponent[3*# + 1, 2] &, 2*# - 1, dmax - #] &, dmax]]] (* Paolo Xausa, Apr 29 2024 *)
  • PARI
    up_to = 91;
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k)));
    A372283list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372283sq((a-(col-1)),col))); (v); };
    v372283 = A372283list(up_to);
    A372283(n) = v372283[n];

Formula

For n > 1, A(n, k) = R(A372282(n-1, k)), where R(n) = (3*n+1)/2^A371093(n).
For all k >= 1, A(A258145(k-1), k) = 1 [which is the topmost 1 in each column].

A372444 The n-th iterate of 27 with A371094.

Original entry on oeis.org

27, 165, 8021, 12408149, 19607957362005, 32439509492992549521282389, 58947232705679751034215288252890081792789279233365, 259166427025070423330595967015238989905128148712607202753574381749095993394717720069452733214971221
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Cf. A371094.
Column 7 of A371102, column 14 of A372282.
Column 1 of A372560.
Sequences derived from this one:
A372443 obtained when Reduced Collatz-function R is applied to a(n-1), for n > 0,
A372445 column index of a(n) in array A257852,
A372448 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372449 binary lengths minus 1; their first differences: A372451,
A372452 number of terms of A086893 in the interval [a(n), a(1+n)],
A372454 the difference between a(n) and the term of A086893 with the same binary length.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372444(n) = { my(x=27); while(n, x=A371094(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = A371094(a(n-1)).

A371092 a(n) = floor((A000265(3*n+1)+5)/6), where A000265 gives the odd part of its argument.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 3, 7, 1, 8, 4, 9, 3, 10, 5, 11, 1, 12, 6, 13, 4, 14, 7, 15, 2, 16, 8, 17, 5, 18, 9, 19, 2, 20, 10, 21, 6, 22, 11, 23, 3, 24, 12, 25, 7, 26, 13, 27, 1, 28, 14, 29, 8, 30, 15, 31, 4, 32, 16, 33, 9, 34, 17, 35, 3, 36, 18, 37, 10, 38, 19, 39, 5, 40, 20, 41, 11, 42, 21, 43, 1, 44, 22, 45, 12
Offset: 0

Views

Author

Antti Karttunen, Apr 19 2024

Keywords

Comments

When a(n) is applied to square array A257852 we obtain square array A002260, or in other words, a(n) applied to any odd number gives the index of the column where it is located in array A257852.

Crossrefs

Programs

  • Maple
    with(padic): A37109 := n -> floor(1/6*(3*n + 1)/2^ordp(3*n + 1, 2) + 5/6); seq(A37109(n), n = 0 .. 89); # Miles Wilson, Oct 10 2024
  • Mathematica
    A371092[n_] := With[{k = 3*n + 1}, Floor[(k/2^IntegerExponent[k, 2] + 5)/6]];
    Array[A371092, 100, 0] (* Paolo Xausa, Apr 20 2024 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A371092(n) = floor((A000265(1+(3*n))+5)/6);

Formula

a(n) = a(4*n + 1) = a(16*n + 5) = a(64*n + 21) = ... = a(4^k * n + ((4^k)-1)/3).
Showing 1-10 of 17 results. Next