cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A372288 Array read by upward antidiagonals: A(n, k) = A265745(A372282(n, k)), n,k >= 1, where A265745(n) is the sum of digits in "Jacobsthal greedy base".

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Comments

Collatz conjecture is equal to the claim that each column will eventually settle to constant 1's, somewhere under its topmost row. This works as only the bisection A002450 of Jacobsthal numbers (A001045) contains numbers of the form 4k+1, while the other bisection contains only numbers of the form 4k+3, which do not occur among the range of A372351. See also the comments in A371094.

Examples

			Array begins:
n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13     14 15    16 17 18 19 20    21 22
---+----------------------------------------------------------------------------
1  | 1, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3,     3, 3,    3, 3, 3, 3, 5,    5, 1,
2  | 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 5, 5,     5, 3,    5, 3, 3, 3, 5,    5, 3,
3  | 1, 1, 1, 3, 3, 3, 1, 5, 1, 3, 1, 3, 3,     5, 3,    5, 5, 1, 3, 3,    5, 3,
4  | 1, 1, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 3,     5, 3,    3, 3, 1, 3, 5,    5, 3,
5  | 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3,     5, 1,    5, 3, 1, 3, 3,    3, 3,
6  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3,     3, 1,    5, 3, 1, 1, 5,    5, 3,
7  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    3, 3, 1, 1, 3,    5, 3,
8  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 3,    3, 3,
9  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     3, 1,    5, 1, 1, 1, 3,    5, 1,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 3,    5, 1,
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1, 2155, 1, 1, 1, 1,    5, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1, 6251, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10347, 1,    5, 1, 1, 1, 1,    5, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1,    5, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    7, 1, 1, 1, 1,    5, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     5, 1,    5, 1, 1, 1, 1,    7, 1,
		

Crossrefs

Cf. also array A372561 (formed by columns whose indices in this array are given by A372443).

Programs

A372354 Array read by upward antidiagonals: A(n, k) = A000523(A372282(n, k)), n,k >= 1, where A000523(x) is one less than the number of bits in the binary expansion of x.

Original entry on oeis.org

0, 4, 1, 12, 4, 2, 28, 12, 8, 2, 60, 28, 20, 5, 3, 124, 60, 44, 10, 6, 3, 252, 124, 92, 19, 13, 6, 3, 508, 252, 188, 40, 26, 11, 8, 3, 1020, 508, 380, 84, 51, 24, 20, 6, 4, 2044, 1020, 764, 172, 104, 52, 44, 11, 7, 4, 4092, 2044, 1532, 348, 212, 108, 92, 19, 16, 6, 4, 8188, 4092, 3068, 700, 428, 220, 188, 40, 36, 13, 12, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2024

Keywords

Examples

			Array begins:
n\k|    1     2     3    4    5    6     7    8     9   10    11   12   13   14
---+-----------------------------------------------------------------------------
1  |    0,    1,    2,   2,   3,   3,    3,   3,    4,   4,    4,   4,   4,   4,
2  |    4,    4,    8,   5,   6,   6,    8,   6,    7,   6,   12,   7,   8,   7,
3  |   12,   12,   20,  10,  13,  11,   20,  11,   16,  13,   28,  11,  14,  12,
4  |   28,   28,   44,  19,  26,  24,   44,  19,   36,  26,   60,  24,  29,  23,
5  |   60,   60,   92,  40,  51,  52,   92,  40,   76,  51,  124,  52,  58,  44,
6  |  124,  124,  188,  84, 104, 108,  188,  84,  156, 104,  252, 108, 115,  84,
7  |  252,  252,  380, 172, 212, 220,  380, 172,  316, 212,  508, 220, 232, 165,
8  |  508,  508,  764, 348, 428, 444,  764, 348,  636, 428, 1020, 444, 468, 326,
9  | 1020, 1020, 1532, 700, 860, 892, 1532, 700, 1276, 860, 2044, 892, 940, 650,
		

Crossrefs

Cf. A000523, A371094, A372282, A372356 (columnwise first differences), A372357.
Row 1 is 0 followed by A113473.

Programs

  • PARI
    up_to = 78;
    A000523(n) = logint(n,2);
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k)));
    A372354sq(n,k) = A000523(A372282sq(n,k));
    A372354list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372354sq((a-(col-1)),col))); (v); };
    v372354 = A372354list(up_to);
    A372354(n) = v372354[n];

A372285 Array read by upward antidiagonals: A(n,k) is the number of terms of A086893 in the interval [b(n, k), b(n+1, k)], n,k >= 1, where b = A372282.

Original entry on oeis.org

5, 9, 4, 17, 9, 7, 33, 17, 13, 2, 65, 33, 25, 5, 4, 129, 65, 49, 10, 6, 3, 257, 129, 97, 22, 13, 6, 6, 513, 257, 193, 45, 26, 14, 13, 3, 1025, 513, 385, 89, 54, 29, 25, 4, 4, 2049, 1025, 769, 177, 109, 57, 49, 9, 10, 3, 4097, 2049, 1537, 353, 217, 113, 97, 22, 21, 6, 9, 8193, 4097, 3073, 705, 433, 225, 193, 45, 41, 13, 17, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2024

Keywords

Examples

			Array begins:
n\k|    1     2      3     4     5     6      7     8      9    10     11
---+----------------------------------------------------------------------
1  |    5,    4,     7,    2,    4,    3,     6,    3,     4,    3,     9,
2  |    9,    9,    13,    5,    6,    6,    13,    4,    10,    6,    17,
3  |   17,   17,    25,   10,   13,   14,    25,    9,    21,   13,    33,
4  |   33,   33,    49,   22,   26,   29,    49,   22,    41,   26,    65,
5  |   65,   65,    97,   45,   54,   57,    97,   45,    81,   54,   129,
6  |  129,  129,   193,   89,  109,  113,   193,   89,   161,  109,   257,
7  |  257,  257,   385,  177,  217,  225,   385,  177,   321,  217,   513,
8  |  513,  513,   769,  353,  433,  449,   769,  353,   641,  433,  1025,
9  | 1025, 1025,  1537,  705,  865,  897,  1537,  705,  1281,  865,  2049,
10 | 2049, 2049,  3073, 1409, 1729, 1793,  3073, 1409,  2561, 1729,  4097,
11 | 4097, 4097,  6145, 2817, 3457, 3585,  6145, 2817,  5121, 3457,  8193,
12 | 8193, 8193, 12289, 5633, 6913, 7169, 12289, 5633, 10241, 6913, 16385,
etc.
The count includes also the starting and/or ending point, if either of them is a term of A086893. For example, when going from A372282(2,1) = 21 to A372282(3,1) = 5461, we count terms A086893(5..13) = [21, 53, 85, 213, 341, 853, 1365, 3413, 5461], nine in total, therefore A(2,1) = 9.
When going from A371102(1,8) = 15 to A371102(2,8) = 93, we count terms 21, 53, 85 of A086893 in the interval [15, 93], therefore A(1,8) = 3.
		

Crossrefs

Programs

  • PARI
    up_to = 78;
    A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k)));
    A372286(n) = { my(u=A371094(n), k1); for(i=1,oo,if(A086893(i)>=n,k1=i-1; break)); for(i=k1,oo,if(A086893(i)>u,return(i-k1-1))); };
    A372285sq(n,k) = A372286(A372282sq(n,k));
    A372285list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372285sq((a-(col-1)),col))); (v); };
    v372285 = A372285list(up_to);
    A372285(n) = v372285[n];

Formula

A(n, k) = A372286(A372282(n, k)).

A372353 Array read by upward antidiagonals: A(n, k) = A372352(A372282(n, k)), n,k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 24, 4, 0, 0, 0, 256, 32, 6, 0, 0, 0, 0, 6144, 16, 0, 0, 0, 0, 0, 16777216, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 896, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6144, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16777216, 0, 56, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2024

Keywords

Comments

Zeros occur in the same locations where 1's occur in array A372287.

Examples

			Array begins:
n\k| 1  2  3    4         5   6  7    8  9        10 11  12                 13
---+---------------------------------------------------------------------------
1  | 0, 0, 0,   2,        4,  6, 0,   2, 4,        6, 0,  2,                 4,
2  | 0, 0, 0,  24,       32, 16, 0,   8, 0,       32, 0, 56,                96,
3  | 0, 0, 0, 256,     6144,  0, 0, 896, 0,     6144, 0,  0,              8192,
4  | 0, 0, 0,   0, 16777216,  0, 0,   0, 0, 16777216, 0,  0,         402653184,
5  | 0, 0, 0,   0,        0,  0, 0,   0, 0,        0, 0,  0, 72057594037927936,
6  | 0, 0, 0,   0,        0,  0, 0,   0, 0,        0, 0,  0,                 0,
		

Crossrefs

Cf. also A372285 and A372355 (columnwise first differences).

Programs

A372359 Array read by upward antidiagonals: A(n, k) = A372358(A372282(n, k)), n,k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 24, 4, 0, 0, 0, 256, 32, 6, 0, 0, 0, 0, 6144, 16, 0, 0, 0, 0, 0, 16777216, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 1408, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6144, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16777216, 0, 88, 12
Offset: 1

Views

Author

Antti Karttunen, May 01 2024

Keywords

Comments

Zeros occur in the same locations as where they occur in A372353 and where 1's occur in array A372287.

Examples

			Array begins:
n\k| 1  2  3    4     5   6  7     8  9    10 11  12         13             14
---+----------------------------------------------------------------------------
1  | 0, 0, 0,   2,    4,  6, 0,    2, 4,    6, 0,  2,        12,            14,
2  | 0, 0, 0,  24,   32, 16, 0,    8, 0,   32, 0, 88,        96,           112,
3  | 0, 0, 0, 256, 6144,  0, 0, 1408, 0, 6144, 0,  0,      8192,          2560,
4  | 0, 0, 0,   0, 2^24,  0, 0,    0, 0, 2^24, 0,  0, 402653184,       6815744,
5  | 0, 0, 0,   0,    0,  0, 0,    0, 0,    0, 0,  0,      2^56, 4947802324992,
6  | 0, 0, 0,   0,    0,  0, 0,    0, 0,    0, 0,  0,         0,     31 * 2^79,
where 2^56 = 72057594037927936 and 31 * 2^79 = 18738350204026752207945728.
		

Crossrefs

Cf. also A372353.

Programs

Formula

A(n, k) = A372282(n,k) XOR A086893(1+A372354(n, k)), where XOR is bitwise-xor, A003987.

A371094 a(n) = m*(2^e) + ((4^e)-1)/3, where m = 3n+1, and e is the 2-adic valuation of m.

Original entry on oeis.org

1, 21, 7, 21, 13, 341, 19, 45, 25, 117, 31, 69, 37, 341, 43, 93, 49, 213, 55, 117, 61, 5461, 67, 141, 73, 309, 79, 165, 85, 725, 91, 189, 97, 405, 103, 213, 109, 1877, 115, 237, 121, 501, 127, 261, 133, 1109, 139, 285, 145, 597, 151, 309, 157, 5461, 163, 333, 169, 693, 175, 357, 181, 1493, 187, 381, 193, 789, 199
Offset: 0

Views

Author

Antti Karttunen (proposed by Ali Sada), Apr 19 2024

Keywords

Comments

Construction: take the binary expansion of 3n+1 (A016777(n)), and substitute "01" for all trailing 0-bits that follow after its odd part (= A067745(1+n)), of which there are A371093(n) in total. See the examples.

Examples

			For n=1, 3*n+1 = 4, "100" in binary, when we substitute 01's for the two trailing 0's, we obtain 21, "10101" in binary, therefore a(1) = 21.
For n=6, 3*6+1 = 19, "10011" in binary, and there are no trailing 0's, and no changes, therefore a(6) = 19.
For n=7, 3*7+1 = 22, "10110" in binary, with one trailing 0, which when replaced with 01 gives us 45, "101101" in binary, therefore a(7) = 45.
For n=229, there are e=4 trailing bit expansions 0 -> 01,
  3n+1 = binary  101011  0 0 0 0
  a(n) = binary  101011 01010101
		

Crossrefs

Cf. A016921, A372351 (even and odd bisection), A372290 (numbers occurring in the latter).
Cf. also A302338.

Programs

  • Mathematica
    Array[#2*(2^#3) + ((4^#3) - 1)/3 & @@ {#1, #2, IntegerExponent[#2, 2]} & @@ {#, 3 #1 + 1} &, 67, 0] (* Michael De Vlieger, Apr 19 2024 *)
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    
  • Python
    def A371094(n): return ((m:=3*n+1)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024

Formula

a(n) = A372289(A016777(n)).
a(2n) = A016777(2n) = A016921(n).

A372283 Array read by upward antidiagonals: A(n, k) = R(A(n-1, k)) for n > 1, k >= 1; A(1, k) = 2*k-1, where Reduced Collatz function R(n) gives the odd part of 3n+1.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 1, 1, 7, 1, 1, 1, 11, 9, 1, 1, 1, 17, 7, 11, 1, 1, 1, 13, 11, 17, 13, 1, 1, 1, 5, 17, 13, 5, 15, 1, 1, 1, 1, 13, 5, 1, 23, 17, 1, 1, 1, 1, 5, 1, 1, 35, 13, 19, 1, 1, 1, 1, 1, 1, 1, 53, 5, 29, 21, 1, 1, 1, 1, 1, 1, 1, 5, 1, 11, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 35, 25
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Comments

Collatz conjecture is equal to the claim that in each column 1 will eventually appear. See also arrays A372287 and A372288.

Examples

			Array begins:
n\k| 1  2  3   4   5   6   7   8   9  10  11  12  13   14  15   16  17  18
---+-----------------------------------------------------------------------
1  | 1, 3, 5,  7,  9, 11, 13, 15, 17, 19, 21, 23, 25,  27, 29,  31, 33, 35,
2  | 1, 5, 1, 11,  7, 17,  5, 23, 13, 29,  1, 35, 19,  41, 11,  47, 25, 53,
3  | 1, 1, 1, 17, 11, 13,  1, 35,  5, 11,  1, 53, 29,  31, 17,  71, 19,  5,
4  | 1, 1, 1, 13, 17,  5,  1, 53,  1, 17,  1,  5, 11,  47, 13, 107, 29,  1,
5  | 1, 1, 1,  5, 13,  1,  1,  5,  1, 13,  1,  1, 17,  71,  5, 161, 11,  1,
6  | 1, 1, 1,  1,  5,  1,  1,  1,  1,  5,  1,  1, 13, 107,  1, 121, 17,  1,
7  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  5, 161,  1,  91, 13,  1,
8  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 121,  1, 137,  5,  1,
9  | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  91,  1, 103,  1,  1,
10 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 137,  1, 155,  1,  1,
11 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 103,  1, 233,  1,  1,
12 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 155,  1, 175,  1,  1,
13 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 233,  1, 263,  1,  1,
14 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 175,  1, 395,  1,  1,
15 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 263,  1, 593,  1,  1,
16 | 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 395,  1, 445,  1,  1,
		

Crossrefs

Cf. A005408 (row 1), A075677 (row 2), A372443 (column 14).
Arrays derived from this one or related to:
A372287 the column index of A(n, k) in array A257852,
A372361 terms xored with binary words of the same length, either of the form 10101...0101 or 110101...0101, depending on whether the binary length is odd or even,
A372360 binary weights of A372361.
Cf. also array A371095 (giving every fourth column, 1, 5, 9, ...) and irregular array A256598 which gives the terms of each column, but only down to the first 1.

Programs

  • Mathematica
    With[{dmax = 15}, Table[#[[k, n-k+1]], {n, dmax}, {k, n}] & [Array[NestList[(3*# + 1)/2^IntegerExponent[3*# + 1, 2] &, 2*# - 1, dmax - #] &, dmax]]] (* Paolo Xausa, Apr 29 2024 *)
  • PARI
    up_to = 91;
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k)));
    A372283list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372283sq((a-(col-1)),col))); (v); };
    v372283 = A372283list(up_to);
    A372283(n) = v372283[n];

Formula

For n > 1, A(n, k) = R(A372282(n-1, k)), where R(n) = (3*n+1)/2^A371093(n).
For all k >= 1, A(A258145(k-1), k) = 1 [which is the topmost 1 in each column].

A372444 The n-th iterate of 27 with A371094.

Original entry on oeis.org

27, 165, 8021, 12408149, 19607957362005, 32439509492992549521282389, 58947232705679751034215288252890081792789279233365, 259166427025070423330595967015238989905128148712607202753574381749095993394717720069452733214971221
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Cf. A371094.
Column 7 of A371102, column 14 of A372282.
Column 1 of A372560.
Sequences derived from this one:
A372443 obtained when Reduced Collatz-function R is applied to a(n-1), for n > 0,
A372445 column index of a(n) in array A257852,
A372448 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372449 binary lengths minus 1; their first differences: A372451,
A372452 number of terms of A086893 in the interval [a(n), a(1+n)],
A372454 the difference between a(n) and the term of A086893 with the same binary length.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372444(n) = { my(x=27); while(n, x=A371094(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = A371094(a(n-1)).

A371096 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(1, k) = 8*k-7, and A(n+1, k) = A371094(A(n, k)), n,k >= 1.

Original entry on oeis.org

1, 21, 9, 5461, 117, 17, 357913941, 11605, 213, 25, 1537228672809129301, 72701269, 87381, 309, 33, 28356863910078205288614550619314017621, 3752999689475413, 91625968981, 30037, 405, 41, 9649340769776349618630915417390658987772498722136713669954798667326094136661, 27043212804868893898596335048021, 100743818301219097892181, 760567125, 79189, 501, 49
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2024

Keywords

Examples

			Array begins:
n\k|         1         2            3          4           5          6
---+--------------------------------------------------------------------
1  |         1,        9,          17,        25,         33,        41,
2  |        21,      117,         213,       309,        405,       501,
3  |      5461,    11605,       87381,     30037,      79189,     48469,
4  | 357913941, 72701269, 91625968981, 760567125, 1968526677, 299193685,
		

Crossrefs

Cf. A371094, A017077 (row 1).
Every fourth column (1, 5, 9, 13, 17, ...) of array A372282.
Cf. also arrays A257852, A371100 and A371102.

Programs

  • PARI
    up_to = 28;
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A371096sq(n,k) = if(1==n,8*k-7,A371094(A371096sq(n-1,k)));
    A371096list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371096sq((a-(col-1)),col))); (v); };
    v371096 = A371096list(up_to);
    A371096(n) = v371096[n];

A372287 Array read by upward antidiagonals: A(n, k) = A371092(A372283(n, k)), n,k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Comments

A(n, k) gives the column index of A372282(n, k) [or equally, of A372283(n, k)] in array A257852.
Collatz conjecture is equal to the claim that in each column 1 will eventually appear.

Examples

			Array begins:
n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13  14 15  16 17 18 19  20
---+---------------------------------------------------------------
1  | 1, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 4,  7, 2,  8, 5, 9, 2, 10,
2  | 1, 1, 1, 3, 2, 3, 1, 6, 1, 2, 1, 9, 5,  6, 3, 12, 4, 1, 2, 15,
3  | 1, 1, 1, 3, 3, 1, 1, 9, 1, 3, 1, 1, 2,  8, 3, 18, 5, 1, 3, 12,
4  | 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 12, 1, 27, 2, 1, 3, 17,
5  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 18, 1, 21, 3, 1, 1,  4,
6  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 16, 3, 1, 1,  5,
7  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 23, 1, 1, 1,  2,
8  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 18, 1, 1, 1,  3,
9  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 26, 1, 1, 1,  3,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 18, 1, 39, 1, 1, 1,  1,
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 30, 1, 1, 1,  1,
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 44, 1, 1, 1,  1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30, 1, 66, 1, 1, 1,  1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 44, 1, 99, 1, 1, 1,  1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 1, 75, 1, 1, 1,  1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 99, 1, 28, 1, 1, 1,  1,
17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 75, 1, 42, 1, 1, 1,  1,
18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 63, 1, 1, 1,  1,
19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 48, 1, 1, 1,  1,
20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 63, 1, 71, 1, 1, 1,  1,
		

Crossrefs

Cf. also A371097 (array giving every fourth column, 1, 5, 9, ...), A371103 (array giving every even numbered column), also array A371101.

Programs

  • PARI
    up_to = 105;
    A000265(n) = (n>>valuation(n,2));
    A371092(n) = floor((A000265(1+(3*n))+5)/6);
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372283sq(n,k) = if(1==n,2*k-1,R(A372283sq(n-1,k)));
    A372287sq(n,k) = A371092(A372283sq(n,k));
    A372287list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372287sq((a-(col-1)),col))); (v); };
    v372287 = A372287list(up_to);
    A372287(n) = v372287[n];

Formula

A(n, k) = A371092(A372282(n,k)) = A371092(A372283(n,k)).
Showing 1-10 of 17 results. Next