cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257863 Expansion of 1/(1 - x - x^2 + x^5 - x^6).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 18, 29, 45, 72, 112, 178, 279, 441, 693, 1094, 1721, 2714, 4273, 6735, 10607, 16715, 26329, 41485, 65352, 102965, 162209, 255560, 402613, 634306, 999306, 1574368, 2480323, 3907638, 6156268, 9698906, 15280112, 24073063, 37925860, 59750293
Offset: 0

Views

Author

David Neil McGrath, May 11 2015

Keywords

Comments

This sequence counts partially ordered partitions of (n) into parts (1,2,3,4) where only the position (order) of the 4's are important. The 4's behave like placeholders for the unordered 1's, 2's and 3's. (See example.)

Examples

			a(8)=29 These are (44),(341),(143),(431=413),(314=134),(422),(242),(224),(4211=4121=4112),(2114=1214=1124),(1421=1412),(2141=1241),(2411),(1142),(41111),(14111),(11411),(11141),(11114),(332=323=233),(3311=1133=1331=3113=1313=3131),(3221=twelve),(32111=twenty),(311111=six),(2222),(22211=ten),(221111=fifteen),(2111111=seven),(11111111)
		

Programs

  • Magma
    [n le 6 select NumberOfPartitions(n-1) else Self(n-1)+Self(n-2)-Self(n-5)+Self(n-6): n in [1..50]]; // Vincenzo Librandi, May 12 2015
    
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + a[n - 2] - a[n - 5] + a[n - 6], a[1] == 1, a[2] == 1, a[3] == 2, a[4] == 3, a[5] == 5, a[6] == 7}, a, {n, 43}] (* Michael De Vlieger, May 11 2015 *)
    CoefficientList[Series[1/(1 - x - x^2 + x^5 - x^6), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 1, 0, 0, -1, 1}, {1, 1, 2, 3, 5, 7}, 50] (* Vincenzo Librandi, May 12 2015 *)
  • Sage
    m = 50; L. = PowerSeriesRing(ZZ, m); f = 1/(1-x-x^2+x^5-x^6); print(f.coefficients()) # Bruno Berselli, May 12 2015

Formula

G.f.: 1/(1-x-x^2+x^5-x^6).
a(n) = a(n-1) + a(n-2) - a(n-5) + a(n-6).