A257865 Smallest k such that phi(k) = n*phi(k+1), where phi(n) = A000010(n) gives the value of Euler's totient function at n.
1, 5, 119, 629, 17907119
Offset: 1
Examples
a(3) = 119, because phi(119) == 3*phi(120) = 96 and 119 is the smallest k where this equality holds for n = 3.
Links
- Manfred Scheucher, A lower bound on A257865(n)
Programs
-
Mathematica
Table[k = 1; While[EulerPhi[k] != n EulerPhi[k + 1], k++]; k, {n, 4}] (* Michael De Vlieger, May 12 2015 *)
-
PARI
a(n) = my(k=1); while(eulerphi(k)!=n*eulerphi(k+1), k++); k
Formula
a(n) >= exp(exp(c(n-3))) with c=exp(gamma) and gamma being the Euler-Mascheroni_constant (see pdf). - Manfred Scheucher, May 27 2015
Comments