A257872 Decimal expansion of the Madelung type constant C(4|1) (negated).
5, 5, 4, 5, 1, 7, 7, 4, 4, 4, 4, 7, 9, 5, 6, 2, 4, 7, 5, 3, 3, 7, 8, 5, 6, 9, 7, 1, 6, 6, 5, 4, 1, 2, 5, 4, 4, 6, 0, 4, 0, 0, 1, 0, 7, 4, 8, 8, 2, 0, 4, 2, 0, 3, 2, 9, 6, 5, 4, 4, 0, 0, 7, 5, 9, 4, 7, 1, 4, 8, 9, 7, 5, 7, 5, 7, 5, 5, 7, 7, 2, 4, 8, 4, 6, 9, 0, 6, 6, 1, 5, 9, 7, 1, 3, 4, 9, 5, 0, 0, 3, 3, 6
Offset: 1
Examples
-5.54517744447956247533785697166541254460400107488204203296544...
Links
- Hassan Chamati and Nicholay S. Tonchev, Exact results for some Madelung type constants in the finite-size scaling theory, arXiv:cond-mat/0003235 [cond-mat.stat-mech], 2000.
- Mark B. Villarino and Joseph C. Várilly, Archimedes' Revenge, arXiv:2108.05195 [math.HO], 2021.
- Eric Weisstein's World of Mathematics, Madelung Constants
- Eric Weisstein's World of Mathematics, Trihyperboloid
- Index entries for transcendental numbers
Programs
-
Maple
evalf(-8*log(2),120); # Vaclav Kotesovec, May 11 2015
-
Mathematica
RealDigits[-8*Log[2], 10, 103] // First
-
PARI
-8*log(2) \\ Charles R Greathouse IV, Sep 02 2021
Formula
-8*log(2).
4*log(2)/5 = 8*log(2)/10 = Sum_{k>=1} F(k)^2/(k * 3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 09 2020
Comments