cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257887 Number of proper diagonals of the n-dimensional associahedron (i.e., diagonals that are not included in lower dimension faces).

Original entry on oeis.org

1, 5, 34, 273, 2436, 23391, 237090, 2505228, 27360612, 306956091, 3521389998, 41164654020, 489017000736, 5890746106977, 71829149873286, 885296835708778, 11015753148497480, 138241674405266782, 1748203287998505712, 22261537862360050040, 285268915333307553016
Offset: 1

Views

Author

Alon Regev, May 11 2015

Keywords

Comments

a(n) is also the number of pairs of triangulations of an (n+3)-gon that have no diagonals in common.

References

  • D. Huguet and D. Tamari, La structure polyedrale des complexes de parenthesages, J. Combinatorics, Information & System Sciences 3 (1978) pages 69-81

Programs

  • Mathematica
    nmax = 23; A = Sum[CatalanNumber[n]^2*x^(n+1), {n, 0, nmax}]+O[x]^(nmax+1); B = InverseSeries[A, x] // Normal; Drop[CoefficientList[(-B+x-x^2)/2, x], 3] (* Jean-François Alcover, Feb 20 2017, after F. Chapoton *)
  • PARI
    seq(n)={Vec(x - x^2 - serreverse(sum(k=0, n+1, (binomial(2*k, k)/(k+1))^2*x^(k+1)) + O(x^(n+3))))/2} \\ Andrew Howroyd, Mar 18 2018
    
  • Sage
    x = PowerSeriesRing(QQ, 'x').gen()
    N = 30
    A = sum(catalan_number(n) ** 2 * x ** (n + 1) for n in range(N)).O(N + 1)
    B = A.reverse()
    list((-B+x-x**2)/2) # F. Chapoton, Feb 17 2017

Extensions

More terms from F. Chapoton, Feb 17 2017