cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257899 Pandigital numbers reordered so that the numbers A050278(n)/3^k, where 3^k||A050278(n), are in nondecreasing order.

Original entry on oeis.org

7246198035, 3410256897, 5361708249, 5902183746, 6820513794, 8145396207, 8269753401, 9145036728, 9537240186, 1257389406, 1359426078, 4379605281, 1742063598, 6185973240, 2081654397, 2095471863, 6472951380, 2170936485, 2304859617, 2415930786, 2419650873
Offset: 1

Views

Author

Keywords

Comments

If two such numbers A050278(n_1)/3^k_1 and A050278(n_2)/3^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2).
There are 5985 such pairs.

Crossrefs

Programs

  • Python
    from itertools import permutations
    l = []
    for d in permutations('0123456789', 10):
        if d[0] != '0':
            d2 = int(''.join(d))
            d = d2
            r = d2 % 3
            while not r:
                d2, r = divmod(d2, 3)
            l.append((d2,d))
    l.sort()
    A257899_list = [b for a,b in l] # Chai Wah Wu, May 24 2015

Formula

min(A050278(n)/3^k) = 7246198035/3^15 = 505