A257899 Pandigital numbers reordered so that the numbers A050278(n)/3^k, where 3^k||A050278(n), are in nondecreasing order.
7246198035, 3410256897, 5361708249, 5902183746, 6820513794, 8145396207, 8269753401, 9145036728, 9537240186, 1257389406, 1359426078, 4379605281, 1742063598, 6185973240, 2081654397, 2095471863, 6472951380, 2170936485, 2304859617, 2415930786, 2419650873
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Python
from itertools import permutations l = [] for d in permutations('0123456789', 10): if d[0] != '0': d2 = int(''.join(d)) d = d2 r = d2 % 3 while not r: d2, r = divmod(d2, 3) l.append((d2,d)) l.sort() A257899_list = [b for a,b in l] # Chai Wah Wu, May 24 2015
Formula
min(A050278(n)/3^k) = 7246198035/3^15 = 505
Comments