cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257901 Pandigital numbers reordered so that the numbers A050278(n)/5^k, where 5^k||A050278(n), are in nondecreasing order.

Original entry on oeis.org

1304296875, 1342968750, 1437890625, 1824609375, 9123046875, 1923046875, 3104296875, 3142968750, 3649218750, 4137890625, 4862109375, 1034296875, 1269843750, 6349218750, 1284609375, 1293046875, 1347890625, 1432968750, 8124609375, 1629843750, 8462109375
Offset: 1

Views

Author

Keywords

Comments

If two such numbers A050278(n_1)/5^k_1 and A050278(n_2)/5^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/5^8=a(5)/5^9=4671.
There are 46080 such pairs.

Crossrefs

Programs

  • Python
    from itertools import permutations
    l = []
    for d in permutations('0123456789', 10):
        if d[0] != '0':
            d2 = int(''.join(d))
            d = d2
            r = d2 % 5
            while not r:
                d2, r = divmod(d2,5)
            l.append((d2,d))
    l.sort()
    A257901_list = [b for a,b in l] # Chai Wah Wu, May 24 2015

Formula

min(A050278(n)/5^k) = 1304296875/5^8 = 3339.